首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90780篇
  免费   8972篇
  国内免费   8574篇
化学   79309篇
晶体学   1075篇
力学   4180篇
综合类   661篇
数学   4819篇
物理学   18282篇
  2024年   124篇
  2023年   909篇
  2022年   1762篇
  2021年   2135篇
  2020年   2738篇
  2019年   2538篇
  2018年   2479篇
  2017年   3184篇
  2016年   3776篇
  2015年   3316篇
  2014年   3989篇
  2013年   7196篇
  2012年   5800篇
  2011年   5753篇
  2010年   4810篇
  2009年   5756篇
  2008年   4910篇
  2007年   5340篇
  2006年   4678篇
  2005年   4352篇
  2004年   4120篇
  2003年   3269篇
  2002年   3274篇
  2001年   2288篇
  2000年   2121篇
  1999年   1885篇
  1998年   1659篇
  1997年   1500篇
  1996年   1515篇
  1995年   1450篇
  1994年   1289篇
  1993年   1015篇
  1992年   919篇
  1991年   810篇
  1990年   620篇
  1989年   597篇
  1988年   640篇
  1987年   572篇
  1986年   434篇
  1985年   403篇
  1984年   420篇
  1983年   203篇
  1982年   374篇
  1981年   346篇
  1980年   305篇
  1979年   302篇
  1978年   135篇
  1977年   80篇
  1976年   77篇
  1973年   41篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Favipiravir is a potential antiviral medication that has been recently licensed for Covid-19 treatment. In this work, a gadolinium-based magnetic ionic liquid was prepared and used as an extractant in dispersive liquid–liquid microextraction (DLLME) of favipiravir in human plasma. The high enriching ability of DLLME allowed the determination of favipiravir in real samples using HPLC/UV with sufficient sensitivity. The effects of several variables on extraction efficiency were investigated, including type of extractant, amount of extractant, type of disperser and disperser volume. The maximum enrichment was attained using 50 mg of the Gd-magnetic ionic liquid (MIL) and 150 μl of tetrahydrofuran. The Gd-based MIL could form a supramolecular assembly in the presence of tetrahydrofuran, which enhanced the extraction efficiency of favipiravir. The developed method was validated according to US Food and Drug Administration bioanalytical method validation guidelines. The coefficient of determination was 0.9999, for a linear concentration range of 25 to 1.0 × 105 ng/ml. The percentage recovery (accuracy) varied from 99.83 to 104.2%, with RSD values (precision) ranging from 4.07 to 11.84%. The total extraction time was about 12 min and the HPLC analysis time was 5 min. The method was simple, selective and sensitive for the determination of favipiravir in real human plasma.  相似文献   
2.
4D printing is an exciting branch of additive manufacturing. It relies on established 3D printing techniques to fabricate objects in much the same way. However, structures which fall into the 4D printed category have the ability to change with time, hence the “extra dimension.” The common perception of 4D printed objects is that of macroscopic single-material structures limited to point-to-point shape change only, in response to either heat or water. However, in the area of polymer 4D printing, recent advancements challenge this understanding. A host of new polymeric materials have been designed which display a variety of wonderful effects brought about by unconventional stimuli, and advanced additive manufacturing techniques have been developed to accommodate them. As a result, the horizons of polymer 4D printing have been broadened beyond what was initially thought possible. In this review, we showcase the many studies which evolve the very definition of polymer 4D printing, and reveal emerging areas of research integral to its advancement.  相似文献   
3.
Amlexanox, an anti-inflammatory and anti-allergic agent, has been widely used clinically for the treatment of canker sores, asthma, and allergic rhinitis. Recently, amlexanox has received considerable attention in curing nonalcoholic fatty liver diseases and hepatitis virus infection. Herein, we first established a sensitive high-performance liquid chromatography-tandem mass spectrum (LC–MS/MS) method for the determination of amlexanox in rat plasma. Propranolol was used as the internal standard (IS). Using a simple protein precipitation method, the amlexanox and IS were separated with Capcell Pak C18 column (2.0 × 50 mm, 5 μm) and eluted with water and acetonitrile each containing 0.1% formic acid using gradient elution condition at a flow rate of 0.4 mL·min−1. Amlexanox and IS were detected by a triple quadrupole mass in multiple reactive monitoring (MRM) under the transitions of m/z 299.2 → 281.2 and m/z 259.9 → 116.1 with positive electrospray ionization, respectively. The calibration curves of amlexanox were established with the range of 50 to 2000 ng·mL−1 (r2 > 0.99). The validation method consisted of selectivity, accuracy, precision, carryover effect, matrix effect, recovery, dilution effect, and stability. The fully validated method was successfully applied to the pharmacokinetic study of amlexanox in Wistar rats.  相似文献   
4.
At present, the reactivity of cyclic alkanes is estimated by comparison with acyclic hydrocarbons. Due to the difference in the structure of cycloalkanes and acycloalkanes, the thermodynamic data obtained by analogy are not applicable. In this study, a molecular beam sampling vacuum ultraviolet photoionization time-of-flight mass spectrometer (MB-VUV-PI-TOFMS) was applied to study the low-temperature oxidation of cyclopentane (CPT) at a total pressure range from 1–3 atm and low-temperature range between 500 and 800 K. Low-temperature reaction products including cyclic olefins, cyclic ethers, and highly oxygenated intermediates (e. g., ketohydroperoxide KHP, keto-dihydroperoxide KDHP, olefinic hydroperoxides OHP and ketone structure products) were observed. Further investigation of the oxidation of CPT – electronic structure calculations – were carried out at the UCCSD(T)-F12a/aug-cc-pVDZ//B3LYP/6-31+ G(d,p) level to explore the reactivity of O2 molecules adding sequentially to cyclopentyl radicals. Experimental and theoretical observations showed that the dominant product channel in the reaction of CPT radicals with O2 is HO2 elimination yielding cyclopentene. The pathways of second and third O2 addition – the dissociation of hydroperoxide – were further confirmed. The results of this study will develop the low-temperature oxidation mechanism of CPT, which can be used for future research on accurately simulating the combustion process of CPT.  相似文献   
5.
In the pursuit to enlarge the library of polyimide materials for energy applications, new polyimide/MWCNTs composite films have been developed by MWCNTs-assisted polycondensation reaction of a hydroxyl and triphenylmethane-containing diamine with benzophenone tetracarboxylic dianhydride targeting to highlight their electrical storage capability as flexible electrodes in micro-supercapacitors (mSCs). The Fourier-transform infrared spectroscopy, proton nuclear magnetic resonance, UV–vis, fluorescence, and Raman spectroscopies were used to demonstrate the evolution of interfacial interactions between MWCNTs and the precursors (diamine monomer and intermediate polyamidic acid) and polyimide matrix that proved to be the origin of MWCNTs homogeneous dispersion. Thus, composite films incorporating 1, 3, 5, and 10 w.t.% MWCNTs were obtained and thoroughly investigated with regard to their morphology, mechanical behavior, thermal stability, and electrical conductivity. The electrochemical performance of these composites was first analyzed in a classical three-electrode cell by cyclic voltammetry and galvanostatic charge-discharge in both aqueous and organic electrolyte systems. By far, the best electrical storage capacity was obtained with the composite polyimide film containing 10% MWCNTs that was further used as both active material and current collector in a flexible symmetric mSC realized by a straightforward and low-cost procedure. In the attempt to better exploit the advantages of this composite film, it was layered with a graphite-containing paint and tested as an electrode in a flexible mSC, which provided satisfactory results. To our knowledge, this is the first report on the electrical charge storage capability of a polyimide/MWCNTs free-standing film as a flexible electrode in mSCs, which do not require time- and resource-consuming processing steps.  相似文献   
6.
The dielectric properties of coordination polymers has been a topic of recent interest, but the role of different functional groups on the dielectric properties of these polymers has not yet been fully addressed. Herein, the effects of electron-donating (R=NH2) and electron-withdrawing (R=NO2) groups on the dielectric behavior of such materials were investigated for two thermally stable and guest-free Zn-based coordination polymers, [Zn(L1)(L2)]n ( 1 ) and [Zn(L1)(L3)]n ( 2 ) [L1=2-(2-pyridyl) benzimidazole (Pbim), L2=5-aminoisophthalate (Aip), and L3=5-nitroisophthalate (Nip)]. The results of dielectric studies of 1 revealed that it possesses a high dielectric constant (κ=65.5 at 1 kHz), while compound 2 displayed an even higher dielectric constant (κ=110.3 at 1 kHz). The electron donating and withdrawing effects of the NH2 and NO2 substituents induce changes in the polarity of the polymers, which is due to the inductive effect from the aryl ring for both NO2 and NH2. Theoretical results from density functional theory (DFT) calculations, which also support the experimental findings, show that both compounds have a distinct electronic behavior with diverse wide bandgaps. The significance of the current work is to provide information about the structure-dielectric property relationships. So, this study promises to pave the way for further research on the effects of different functional groups on coordination polymers on their dielectric properties.  相似文献   
7.
The recognition of boron compounds is well developed as boronic acids but untapped as organotrifluoroborate anions (R−BF3). We are exploring the development of these and other designer anions as anion-recognition motifs by considering them as substituted versions of the parent inorganic ion. To this end, we demonstrate strong and reliable binding of organic trifluoroborates, R−BF3, by cyanostar macrocycles that are size-complementary to the inorganic BF4 progenitors. We find that recognition is modulated by the substituent's sterics and that the affinities are retained using the common K+ salts of R−BF3 anions.  相似文献   
8.
A dispersive solid-phase extraction method based on a new sorbent has been performed on plasma and wastewater samples to determine metoprolol by high-performance liquid chromatography–tandem mass spectrometry. In this study, the analyte was adsorbed from the samples onto microcrystalline cellulose as a green and efficient sorbent and then eluted for use in the determination step. In the mass spectrometer, the analyte was detected in the positive mode and selectivity of the analysis was increased by sequential mass analysis through multiple reaction monitoring. All of the effective parameters in the extraction of metoprolol from plasma and wastewater were optimized. Under optimal conditions the method was linear in the ranges of 1–1,000 and 0.1–1,000 ng/ml in plasma and wastewater samples, respectively. The detection limits of the method were 0.30 and 0.03 ng/ml in plasma and wastewater samples, respectively. The data showed that the method provides low detection limit, wide linear range, good precision and high extraction recovery. Finally several plasma and wastewater samples were successfully analyzed using the method. The use of a small amount of a green and inexpensive sorbent and a low volume of plasma without the need for further pretreatment steps are the main advantages of the method.  相似文献   
9.
3,4-Difluorobenzyl(1-ethyl-5-(4-((4-hydroxypiperidin-1-yl)-methyl)thiazol-2-yl)-1H-indol-3-yl)carbamate (NAI59), a small molecule with outstanding therapeutic effectiveness to anti-pulmonary fibrosis, was developed as an autotaxin inhibitor candidate compound. To evaluate the pharmacokinetics and plasma protein binding of NAI59, a UPLC–MS/MS method was developed to quantify NAI59 in plasma and phosphate-buffered saline. The calibration curve linearity ranged from 9.95 to 1990.00 ng/mL in plasma. The accuracy was −6.8 to 5.9%, and the intra- and inter-day precision was within 15%. The matrix effect and recovery, as well as dilution integrity, were within the criteria. The chromatographic and mass spectrometric conditions were also feasible to determine phosphate-buffered saline samples, and it has been proved that this method exhibits good precision and accuracy in the range of 9.95–497.50 ng/mL in phosphate-buffered saline. This study is the first to determine the pharmacokinetics, absolute bioavailability, and plasma protein binding of NAI59 in rats using this established method. Therefore, the pharmacokinetic profiles of NAI59 showed a dose-dependent relationship after oral administration, and the absolute bioavailability in rats was 6.3%. In addition, the results of protein binding showed that the combining capacity of NAI59 with plasma protein attained 90% and increased with the increase in drug concentration.  相似文献   
10.
A facile biosynthesis route was followed to prepare zinc oxide nanoparticles (ZnO NPs) using Euphorbia milii (E. milii) leaf constituents. The SEM images exhibited presence of spherical ZnO NPs and the corresponding TEM images disclosed monodisperse nature of the ZnO NPs with diameter ranges between 12 and 20 nm. The Brunauer–Emmett–Teller (BET) analysis revealed that the ZnO NPs have specific surface area of 20.46 m2/g with pore diameter of 2 nm–10 nm and pore volume of 0.908 cm3/g. The EDAX spectrum exemplified the existence of Zn and O elements and non-appearance of impurities that confirmed pristine nature of the ZnO NPs. The XRD pattern indicated crystalline peaks corresponding to hexagonal wurtzite structured ZnO with an average crystallite size of 16.11 nm. The FTIR spectrum displayed strong absorption bands at 512 and 534 cm?1 related to ZnO. The photocatalytic action of ZnO NPs exhibited noteworthy degradation of methylene blue dye under natural sunlight illumination. The maximum degradation efficiency achieved was 98.17% at an illumination period of 50 min. The reusability study proved considerable photostability of the ZnO NPs during photocatalytic experiments. These findings suggest that the E. milii leaf constituents can be utilized as suitable biological source to synthesis ZnO NPs for photocatalytic applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号