首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A sensitive and rapid liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and validated for determination of bakkenolide D (BD), which was further applied to assess the pharmacokinetics of BD. In the LC‐MS/MS method, the multiple reaction monitoring mode was used and columbianadin was chosen as internal standard. The method was validated over the range of 1–800 ng/mL with a determination coefficient >0.999. The lower limit of quantification was 1 ng/mL in plasma. The intra‐ and inter‐day accuracies for BD were 91–113 and 100–104%, respectively, and the inter‐day precision was <15%. After a single oral dose of 10 mg/kg of BD, the mean peak plasma concentration of BD was 10.1 ± 9.8 ng/mL at 2 h. The area under the plasma concentration–time curve (AUC0–24 h) was 72.1 ± 8.59 h ng/mL, and the elimination half‐life (T1/2) was 11.8 ± 1.9 h. In case of intravenous administration of BD at a dosage of 1 mg/kg, the AUC0–24 h was 281 ± 98.4 h?ng/mL, and the T1/2 was 8.79 ± 0.63 h. Based on these results, the oral bioavailability of BD in rats at 10 mg/kg is 2.57%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Anacetrapib is a potent and selective CETP inhibitor and is undergoing phase III clinical trials for the treatment of dyslipidemia. A simple and sensitive high‐performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS) method for the quantification of anacetrapib in rat plasma was developed and validated using an easily purchasable compound, chlorpropamide, as an internal standard (IS). A minimal volume of rat plasma sample (20 μL) was prepared by a single‐step deproteinization procedure with 80 μL of acetonitrile. Chromatographic separation was performed using Kinetex C18 column with a gradient mobile phase consisting of water and acetonitrile containing 0.1% formic acid at a flow rate of 0.3 mL/min. Mass spectrometric detection was performed using selected reaction monitoring modes at the mass/charge transitions m/z 638 → 283 for anacetrapib and m/z 277 → 175 for IS. The assay was validated to demonstrate the selectivity, linearity, precision, accuracy, recovery, matrix effect and stability. The lower limit of quantification was 5 ng/mL. This LC‐MS/MS assay was successfully applied in the rat plasma protein binding and pharmacokinetic studies of anacetrapib. The fraction of unbound anacetrapib was determined to be low (ranging from 5.66 to 12.3%), and the absolute oral bioavailability of anacetrapib was 32.7%.  相似文献   

3.
Furanodiene, a sesquiterpene component extracted from the essential oil of the rhizome of Curcuma wenyujin Y.H. Chen et C. Ling (Wen Ezhu), is widely used in traditional Chinese medicine. A sensitive analytical method was established and validated for furanodiene in rat plasma, which was further applied to assess the pharmacokinetics of furanodiene in rats receiving a single dose of furanodiene. Liquid chromatography tandem mass spectrometry (LC/MS/MS) in multiple reaction monitoring mode was used in the method and costundide was used as internal standard. A simple protein precipitation based on methanol was employed. The simple sample cleanup increased the throughput of the method substantially. The method was validated over the range of 1–1000 ng/mL with a correlation coefficient >0.99. The lower limit of quantification was 1 ng/mL for furanodiene in plasma. Intra‐ and inter‐day accuracies for furanodiene were 88–115 and 102–107%, and the inter‐day precision less than 14.4%. After a single oral dose of 10 mg/kg of furanodiene, the mean peak plasma concentration of furanodiene was 66.9 ± 23.4 ng/mL at 1 h, the area under the plasma concentration–time curve (AUC0–10 h) was 220 ± 47.8 h ng/mL, and the elimination half‐life was 1.53 ± 0.06 h. After an intravenous adminstration of furanodiene at a dosage of 5 mg/kg, the area under the plasma concentration–time curve was 225 ± 76.1 h?ng/mL, and the elimination half‐life was 2.40 ± 1.18 h. Based on this result, the oral bioavailability of furanodiene in rats at 10 mg/kg is 49.0%. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
An analytical method for the determination of bisoprolol in human plasma has been developed based on liquid chromatography-tandem mass spectrometry (LC-MS/MS). The analyte and internal standard (IS) diphenhydramine were cleaned up by protein precipitation with acetonitrile, reconstituted in mobile phase and separated by reversed-phase high-performance liquid chromatography (HPLC) using methanol:10 mm ammonium acetate:formic acid (70:30:0.1 v/v/v) as mobile phase. Detection was carried out by multiple reaction monitoring (MRM) on an LC-MS/MS system and was completed within 2.5 min. The assay was linear over the range 0.5-100 ng/mL with a limit of quantitation (LOQ) of 0.5 ng/mL. The intra- and inter-day precision levels were within 5.54 and 9.95%, respectively, while the accuracy was in the range 89.4-113%. This method has been utilized in a pharmacokinetic study, where healthy volunteers were treated with an oral dose of 5 mg bisoprolol.  相似文献   

5.
An LC-MS/MS method for the simultaneous determination of a new P-glycoprotein inhibitor 4-oxo-4H-chromene-2-carboxylic acid [2-(2-(4-[2-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-phenyl)-2H-tetrazol-5-yl)-4,5-dimethoxy-phenyl]-amide (HM-30181) and a P-glycoprotein substrate paclitaxel in rat plasma was developed to simultaneously evaluate the pharmacokinetics of paclitaxel and HM-30181 in the rats. HM-30181, paclitaxel, HM-30059 (internal standard (I.S.) for HM-30181), and docetaxel (I.S. for paclitaxel) were extracted from rat plasma with methyl-tert-butyl ether and analyzed on an Atlantis C18 column (5 microm, 2.1 x 100 mm) with the mobile phase of ACN/10 mM ammonium formate (75:25 v/v). The analytes were detected using an ESI MS/MS in the multiple reaction monitoring (MRM) mode. The standard curves for HM-30181 and paclitaxel in plasma were linear (r > 0.999) over the concentration range of 2.0-500 ng/mL with a weighting of 1/concentration2. The method showed a satisfactory sensitivity (2 ng/mL using 50 microL plasma), precision (CV: < or = 6.6%), accuracy (relative error: -6.3 to 2.0%), and selectivity. This method was successfully applied to the pharmacokinetic study of HM-30181 and paclitaxel in rat plasma after oral-coadministration of paclitaxel and HM-30181 to male Sprague- Dawley rats.  相似文献   

6.
A rapid,sensitive,and accurate method based on LC/MS/MS was developed and validated for the determination of domperidone in human plasma.Domperidone and internal standard,tramadol,were extracted from plasma with diethyl ether-dichloromethane(60∶40,volume ratio)and separated by reversed-phase HPLC with methanol-water-ammonia solution(80∶20∶0.2,volume ratio)as the mobile phase.Detection was carried out via multiple-reaction monitoring(MRM)on a Q-trapTM LC/MS/MS system(Q-trapTM).The assay result was linear over a concentration range of 0.1-30 ng/mL with a limit of quantitation(LOQ)of 0.1 ng/mL.The inter-and intra-day precision levels were within 7.52% and 12.9%,respectively,whereas the accuracy was within a range of 87.3%-114%.This method has been successfully applied to evaluate the pharmacokinetics of domperidone in Chinese healthy volunteers given an oral dose of 10 mg.  相似文献   

7.
A highly sensitive LC–MS/MS method was developed to measure oroxin B in rat plasma and tissue homogenates. The analyte and IS were isolated from biological matrices by a simple protein precipitation followed by centrifugation. Detection was conducted by electrospray negative‐ionization mass spectrometry in selected‐reaction monitoring mode. The assay was linear in the concentration range 4.52–904 ng/mL with intra‐ and inter‐day precision of <14.41%. It was successfully applied to the pharmacokinetics and tissue distribution studies of oroxin B after an intravenous dose of 1.0 mg/kg in rats. The results would be useful for further development of oroxin B.  相似文献   

8.
Gelsenicine is an indole alkaloid isolated from Gelsemium elegans Benth. In recent years, the role of G. elegans Benth preparations in anti‐tumor, analgesic, dilatation and dermatological treatment has attracted attention, and it has been applied clinically, but it is easy to cause poisoning with its use. An UPLC–MS/MS method was established to determine the gelsenicine in mouse blood, and the pharmacokinetics of gelsenicine after intravenous (0.1 mg/kg) and intragastric (0.5 and 1 mg/kg) administration was studied. Deltalin was used as internal standard; a UPLC BEH C18 column was used for chromatographic separation. The mobile phase consisted of acetonitrile and 10 mmol/L ammonium acetate (0.1% formic acid) with a gradient elution flow rate of 0.4 mL/min. Multiple reaction monitoring mode was used for quantitative analysis of gelsenicine in electrospray ionization positive interface. Proteins from mouse blood were removed by acetonitrile precipitation. A validation of this method was performed in accordance with the US Food and Drug Administration guidelines. In the concentration range of 0.05–100 ng/mL, the gelsenicine in the mouse blood was linear (r > 0.995), and the lower limit of quantification was 0.05 ng/mL. In the mouse blood, the intra‐day precision RSD was <12%, the inter‐day precision RSD was <15%, the accuracy ranged from 89.8 to 112.3%, the average recovery was >76.8%, and the matrix effect was between 103.7 and 108.4%, which meet the pharmacokinetic research requirements of gelsenicine. The UPLC–MS/MS method is sensitive, rapid and selective, and has been successfully applied to the pharmacokinetic study of gelsenicine in mice. The absolute bioavailability of gelsenicine is 1.13%.  相似文献   

9.
A rapid and sensitive method using liquid chromatography-tandem mass spectroscopy (LC-MS/MS) was developed and validated for the quantitative determination of cynandione A in rat plasma and tissues. The plasma samples were pretreated by liquid-liquid extraction with ethyl acetate after the internal standard (honokiol) had been spiked. The tissue samples were homogenized with physiological saline and treated further like the plasma samples. The separation was performed using a Zorbax SB-C(18) column (3.5 microm, 2.1 x 100 mm) and a C18 guard column (5 microm, 4.0 x 2.0 mm) with an isocratic mobile phase consisting of methanol-0.1% formic acid (78:22, v/v) at a flow rate of 0.2 mL/min. The Agilent G6410A triple quadrupole LC/MS system was operated under the multiple-reaction monitoring mode using the electrospray ionization technique in negative mode. The nominal retention times for cynandione A and honokiol were 1.41 and 2.63 min, respectively. The method was validated within the concentration range 0.2-1000 ng/mL in plasma and homogenized tissue for cynandione A, and the calibration curves were linear with correlation coefficients >0.992. The lower limit of quantification of cynandione A was 0.2 ng/mL. The intra-day and inter-day precision and accuracy of the assay in plasma were less than 14.4%, while the intra-day and inter-day precision and accuracy of the assay in tissue homogenate were less than 14.2%. This method proved to be suitable for study of pharmacokinetics and tissue distribution of cynandione A in rat.  相似文献   

10.
A rapid, simple, selective and sensitive LC‐MS/MS method was developed for the determination of curculigoside in rat plasma. The analytical procedure involves extraction of curculigoside and syringin (internal standard, IS) from rat plasma with a one‐step extraction method by protein precipitation. The chromatographic resolution was performed on an Agilent XDB‐C18 column (4.6 × 50 mm, 5 µm) using an isocratic mobile phase of methanol with 0.1% formic acid and H2O with 0.1% formic acid (45:55, v/v) at a flow rate of 0.35 mL/min with a total run time of 2.0 min. The assay was achieved under the multiple‐reaction monitoring mode using positive electrospray ionization. Method validation was performed according to US Food and Drug Administration guidelines and the results met the acceptance criteria. The calibration curve was linear over 4.00–4000 ng/mL (R = 0.9984) for curculigoside with a lower limit of quantification of 4.00 ng/mL in rat plasma. The intra‐ and inter‐day precisions and accuracies were 3.5–4.6 and 0.7–9.1%, in rat plasma, respectively. The validated LC‐MS/MS method was successfully applied to a pharmacokinetic study of curculigoside in rats after a single intravenous and oral administration of 3.2 and 32 mg/kg. The absolute bioavailability of curculigoside after oral administration was 1.27%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Euphol is a potential pharmacologically active ingredient isolated from Euphorbia kansui. A simple, rapid, and sensitive method to determine euphol in rat plasma was developed based on liquid chromatography‐tandem mass spectrometry (LC‐MS/MS) for the first time. The analyte and internal standard (IS), oleanic acid, were extracted from plasma with methanol and chromatographied on a C18 short column eluted with a mobile phase of methanol–water–formic acid (95:5:0.1, v/v/v). Detection was performed by positive ion atmospheric pressure chemical ionization in selective reaction monitoring mode. This method monitored the transitions m/z 409.0 → 109.2 and m/z 439.4 → 203.2 for euphol and IS, respectively. The assay was linear over the concentration range 27–9000 ng/mL, with a limit of quantitation of 27 ng/mL. The accuracy was between –7.04 and 4.11%, and the precision was <10.83%. This LC‐MS/MS method was successfully applied to investigate the pharmacokinetic study of euphol in rats after intravenous (6 mg/kg) and oral (48 mg/kg) administration. Results showed that the absolute bioavailability of euphol was approximately 46.01%. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
A rapid, selective, and sensitive liquid chromatography coupled with tandem mass spectrometry (MS/MS) method was developed and validated for the quantitation of the novel CDK5 inhibitor ‘20–223' in mouse plasma. Separation of analytes was achieved by a reverse-phase ACE Excel C18 column (1.7 μm, 100 × 2.1 mm) with gradient elution using 0.1% formic acid (FA) in methanol and 0.1% FA as the mobile phase. Analytes were monitored by MS/MS with an electrospray ionization source in the positive multiple reaction monitoring mode. The MS/MS response was linear over the concentration range 0.2–500 ng/mL for 20–223. The within- and between-batch precision were within the acceptable limits as per Food and Drug Administration guidelines. The validated method was successfully applied to plasma protein binding and in vitro metabolism studies. Compound 20–223 was highly bound to mouse plasma proteins (>98% bound). Utilizing mouse S9 fractions, in vitro intrinsic clearance (CLint) was 24.68 ± 0.99 μL/min/mg protein. A total of 12 phase I and II metabolites were identified with hydroxylation found to be the major metabolic pathway. The validate method required a low sample volume, was linear from 0.2 to 500 ng/mL, and had acceptable accuracy and precision.  相似文献   

13.
Crizotinib is a small molecule inhibitor of anaplastic lymphoma kinase (ALK) and can be used to treat ALK‐positive nonsmall‐cell lung cancer. A rapid and simple high‐performance liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and validated for the quantification of crizotinib in rat plasma using a chemical synthetic compound buspirone as the internal standard (IS). The plasma samples were pretreated by a simple protein precipitation with methanol–acetonitrile (1:1, v/v). Chromatographic separation was successfully achieved on an Agilent Zorbax XDB C18 column (2.1 × 50 mm, 3.5 µm). The gradient elution system was composed of 0.1% formic acid aqueous solution and 0.1% formic acid in methanol solution. The flow rate was set at 0.50 mL/min. The multiple reaction monitoring was based on the transitions of m/z = 450.3 → 177.1 for crizotinib and 386.2 → 122.2 for buspirone (IS). The assay was successfully validated to demonstrate the selectivity, matrix effect, linearity, lower limit of quantification, accuracy, precision, recovery and stability according to the international guidelines. The lower limit of quantification was 1.00 ng/mL in 50 μL of rat plasma. This LC‐MS/MS assay was successfully applied to the quantification and pharmacokinetic study of crizotinib in rats after intravenous and oral administration of crizotinib. The oral absolute bioavailability of crizotinib in rats was 68.6 ± 9.63%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Astragaloside III (AST III), a naturally occurring saponin compound isolated from Radix Astragali, has been demonstrated to have anti‐gastric ulcer, immunomodulatory and antitumor effects. To evaluate its pharmacokinetics in rats, a rapid, sensitive and specific high‐performance liquid chromatography–tandem mass spectrometric (HPLC‐MS/MS) method has been developed and validated for the quantification of astragaloside III in rat plasma. Samples were pretreated using a simple protein precipitation with methanol–acetonitrile (50:50, v/v) and the chromatographic separation was performed on a C18 column by a gradient elution using a mobile phase consisting of water containing 0.1% formic acid and acetonitrile containing 0.1% formic acid. Astragaloside III and the internal standard (buspirone) were detected using a tandem mass spectrometer in positive multiple reaction monitoring mode. Method validation revealed excellent linearity over the range of 5.00–5000 ng/mL together with satisfactory intra‐ and inter‐day precision, accuracy and recovery. Stability testing showed that astragaloside III spiked into rat plasma was stable for 24 h at 20°C temperature, for up to 30 days at ?80°C, and during three freeze–thaw cycles. The method was successfully used to investigate the pharmacokinetic profile of AST III after oral (10 mg/kg) and intravenous (1.0 mg/kg) administration in rats. The oral absolute bioavailability of AST III was calculated to be 4.15 ± 0.67% with an elimination half‐life value of 2.13 ± 0.11 h, suggesting its poor absorption and/or strong metabolism in vivo. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Complanatoside A is a flavonol glycoside isolated from Astragalus complanatus, and currently it is used as a quality control index for A. complanatus in the 2010 edition of the Chinese Pharmacopoeia. For the first time, a simple and sensitive LC‐MS/MS method was developed for the determination of complanatoside A in rat plasma over the range of 2.3–575 ng/mL. Complanatoside A was extracted from plasma by a protein precipitation procedure, separated by LC and detected by MS/MS in positive electrospray ionization mode. The method was validated for selectivity, carryover, sensitivity, linearity, extraction recovery, matrix effect, accuracy, precision and stability studies. The lower limit of quantification was established at 2.3 ng/mL. Intra‐ and inter‐day precisions (LLOQ, low‐QC, med‐QC and high‐QC) were <7.9%, and accuracies were between 94.0 and 105.1%. Matrix effect was acceptable (97.9–103.0%) and extraction recovery was reproducible (88.5–94.4%). Complanatoside A was stable in the investigated conditions. The method was applied to the pharmacokinetics of complanatoside A in rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Choline fenofibrate is the choline salt of fenofibric acid, which releases free fenofibric acid in the gastrointestinal tract. To estimate the absolute oral bioavailability of fenofibric acid and choline fenofibrate, a novel and sensitive UPLC–MS/MS method with liquid–liquid extraction procedure was developed for the determination of fenofibric acid in rat plasma. The separation was achieved on a Phenomenex Kinetex C18 column (50 × 2.1 mm, 2.6 μm) containing 2 mm ammonium acetate–methanol with a gradient elution program. Validations of this method including specificity, sensitivity (limit of quantification, 5 ng/mL), linearity (0.005–10 μg/mL), accuracy (within ±4.3%), precision (intra‐ and inter‐day coefficient of variation <11.3%), recovery (94.9–105.2% for fenofibric acid), matrix effect, stability and dilution, were all within acceptable limits. This method successfully supported the determination of fenofibric acid and choline fenofibrate. The absolute oral bioavailability was 93.4% for choline fenofibrate and 40.0% for fenofibric acid. These results suggested that choline fenofibrate and fenofibric acid had a better in vivo pharmacokinetic behavior than that of fenofibrate. The two new orally administrated pharmaceuticals, fenofibric acid and choline fenofibrate, can be developed as alternatives to fenofibrate.  相似文献   

17.
A highly selective and specific LC‐MS/MS method was developed and validated for the determination of wilforine in rat plasma. The analyte was separated from plasma matrix by using methyl tertiary butyl ether liquid–liquid extraction with bulleyacinitine A as internal standard (IS). The analysis was carried out on a Sepax GP‐Phenyl column using a mixture of methanol and 10 mmol/L ammonium formate buffer solution containing 0.1% formic acid (75:25, v/v) as the mobile phase pumped at a flow rate of 1.0 mL/min. The detection was operated using a triple‐quadrupole mass spectrometer in multiple selected reaction monitoring with the parent‐to‐product quantifier transitions [M + H]+ m/z 867.6 →206.0 for wilforine and 664.1 →584.1 for IS. The main advantage of this method was the high sensitivity (a lower limit of quantification of 0.02 ng/mL) and the small amount of sample (0.1 mL plasma per sample). The method was fully validated to be accurate and precise with a linear range of 0.02–100 ng/mL, and successfully applied to a bioavailability study of wilforine in rats after intravenous and oral administration. The oral absolute bioavailability of wilforine in rats was estimated to be 84%. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
We aimed to investigate the pharmacokinetics, bioavailability and urinary excretion of scopolin and its metabolite scopoletin in rats. An LC–tandem mass spectrometry (MS/MS) method for simultaneous determination of scopolin and scopoletin in rat biomatrices was developed and validated over a plasma and urine concentration range of 5.0–2000 ng/mL. Chromatographic separation was performed on a Hypersil GOLD C18 column with acetonitrile and 0.1% formic acid in water as mobile phase with gradient elution. Detection was performed in the positive ionization and selected reaction monitoring mode. The intra‐ and inter‐batch precision and accuracy, extraction recovery and matrix effect and stability of scopolin and scopoletin were well within the acceptable limits of variation. There was no gender‐related difference in the pharmacokinetic profiles of scopolin. There were significant differences in total area under the concentration–time curve (AUC), time required to achieve a maximal concentration (Tmax) and apparent clearance from plasma (Cl/F) of scopoletin between the male and female rats (p < .05). The bioavailability (F) of scopolin was exceptionally low. The maximal excretion rates were 7.61 μg/h and 7.15 μg/h for scopolin and 31.68 μg/h and 25.58 μg/h for scopoletin in male and female rats, respectively. The LC–MS/MS method was successfully applied to the pharmacokinetic, bioavailability and urinary excretion studies of scopolin and its metabolite scopoletin following a single administration of scopolin to rats.  相似文献   

19.
Aripiprazole is an important antipsychotic drug. A simple, sensitive and rapid ultra‐performance liquid chromatography/electrospray ionization tandem mass spectrometry (UPLC‐ESI‐MS/MS) method was developed and validated for the simultaneous quantification of this compound in rat plasma and brain homogenate. The analyte was extracted from rat plasma and brain homogenate using a weak cation exchange mixed‐mode resin‐based solid phase extraction. The compound was separated on an Agilent Eclipse Plus C18 (2.1 × 50 mm, 1.8 µm) column using a mobile phase of (A) 0.1% formic acid aqueous and (B) acetonitrile with gradient elution. The analyte was detected in positive ion mode using multiple reaction monitoring. The method was validated and the specificity, linearity, limit of quantitation (LOQ), precision, accuracy, recoveries and stability were determined. The LOQ was 0.5 ng/mL for aripiprazole in plasma and 1.5 ng/g in brain tissue. The MS response was linear over the concentration range 0.5–100 ng/mL for aripiprazole in plasma and 1.5–300 ng/g in brain tissue. The precision and accuracy for intra‐day and inter‐day were better than 14%. The relative and absolute recoveries were above 72% and the matrix effects were low. This validated method was successfully used to quantify the rat plasma and brain tissue concentrations of the analyte following chronic treatment with aripiprazole. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
A simple, sensitive, and rapid method for determination of L‐trantinterol in rat plasma was developed for the first time by using LC coupled to MS/MS based on chiral stationary phase. A baseline separation of the enantiomers of trantinterol was achieved on a Chirobiotic V column, using a mixture of acetonitrile–methanol–ammonia–acetic acid (80:20:0.01:0.02, v/v/v/v) as the mobile phase. The detection was performed on a triple‐quadrupole tandem mass spectrometer by multiple reaction monitoring mode via ESI. The calibration curve was linear in concentration range from 0.270 to 108 ng/mL in plasma with the lower limit of quantification of 0.270 ng/mL. The intra‐ and interday precision (relative standard deviation) values were within 10.9% and the accuracy (relative error) was from 2.6 to 9.2% at all quality control levels. The method has been successfully applied to a study of L‐trantinterol pharmacokinetics in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号