首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1192篇
  免费   111篇
  国内免费   421篇
化学   1437篇
晶体学   20篇
力学   39篇
综合类   14篇
数学   94篇
物理学   120篇
  2024年   22篇
  2023年   66篇
  2022年   146篇
  2021年   142篇
  2020年   166篇
  2019年   134篇
  2018年   75篇
  2017年   82篇
  2016年   83篇
  2015年   67篇
  2014年   102篇
  2013年   109篇
  2012年   84篇
  2011年   57篇
  2010年   40篇
  2009年   50篇
  2008年   50篇
  2007年   54篇
  2006年   39篇
  2005年   29篇
  2004年   27篇
  2003年   21篇
  2002年   10篇
  2001年   9篇
  2000年   14篇
  1999年   3篇
  1998年   2篇
  1997年   5篇
  1996年   8篇
  1995年   3篇
  1994年   4篇
  1993年   4篇
  1992年   3篇
  1991年   4篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
排序方式: 共有1724条查询结果,搜索用时 31 毫秒
21.
为研究配位聚合物{[Cu(H2bttc)(H2O)3]·3H2O}n(H2bttc=1,2,4,5-benzenetetracarboxylate)的热分解机理和非等温反应动力学进行了DSC和TG-DTG热分析。由热分析结果和FTIR光谱推测了其热分解机理;将Kissinger法、Ozawa法、积分法和微分法得到的动力学参数进行比较确定了第一个失重过程最可能的动力学模型函数。配位聚合物的X射线单晶结构分析表明它由 [Cu(H2bttc)(H2O)3]n分子链组成,并有客体水分子通过分子间氢键附着在分子链上。这一结构特点与热分析结果相一致。还有一种氢键将分子链连接起来形成二维框架,这一框架在失去配位水和结晶水后到553 K开始分解。  相似文献   
22.
Here, we present just a collection of beans (JACOB): an integrated batch‐based framework designed for the rapid development of computational chemistry applications. The framework expedites developer productivity by handling the generic infrastructure tier, and can be easily extended by user‐specific scientific code. Paradigms from enterprise software engineering were rigorously applied to create a scalable, testable, secure, and robust framework. A centralized web application is used to configure and control the operation of the framework. The application‐programming interface provides a set of generic tools for processing large‐scale noninteractive jobs (e.g., systematic studies), or for coordinating systems integration (e.g., complex workflows). The code for the JACOB framework is open sourced and is available at: www.wallerlab.org/jacob . © 2013 Wiley Periodicals, Inc.  相似文献   
23.
Thixotropic materials are widely used in a variety of industrial applications. The constitutive relations to describe these materials are based on one-dimensional experiments in which the material is subjected to a shear motion and there is no unique methodology to obtain proper three-dimensional models. The path towards generalization to a three-dimensional framework is invariably carried out in a ad hoc manner. Here we propose a three-dimensional model that stems from a general thermodynamic framework that has proved to be quite robust in the development of constitutive relations, namely the application of the second law of thermodynamics together with the maximization of the entropy production. This leads to a constitutive equation that has the same form of a generalized Upper Convected Maxwell equation, if we require that changes of microstructure due to the deformation of each Maxwell element that comprises the model are reversible. Changes in microstructure are governed by a potential that is a measure of the difference between the current structure and the equilibrium structure associated with it. The equilibrium structure associated with the current structure is determined by the current value of stress, considered the main break up agent. We assume that the state of equilibrium would be achieved in a Motion With Constant Stress History, starting from the current stress state, until a steady state where the kinematics is not changing.  相似文献   
24.
A two-dimensional (2D) 3,3,3,4,5,5,6-connected ZnⅡ coordination compound [Zn5(L)2(OH)6]∞ (L=9,10-dioxo-9,10-dihydroanthracene-1,8-dicarboxylate) has been synthesized and characterized by IR, elemental analysis, X-ray powder diffraction and single crystal X-ray diffraction analysis. Moreover, the luminescent properties of the ligand and corresponding compound have been briefly investigated.  相似文献   
25.
The precise and real-time sensing of the temperature within the physiological range is of great significance in biology and medicine. Here, a Zn-based metal-organic framework (MOF) named Zn-TCOMA is synthesized with good SHG performance due to its unique structure of the ligand and 3D frameworks. By encapsulating the two-photon fluorescent dye DMASE into the pores of Zn-TCOMA, the composite Zn-TCOMA?DMASE is obtained and simultaneously exhibits SHG response and two-photon fluorescence. Utilizing the intensity ratio between two-photon fluorescence of DMASE and SHG signal of Zn-TCOMA, Zn-TCOMA?DMASE exhibits ratiometric temperature sensing property at physiological temperature region of 20~60 °C with high sensitivity. This MOF thermometer also shows excellent repeatability, good biocompatibility, and high temperature resolution of 0.018 °C, opening a new avenue to develop diverse optical thermometric or thermographic applications in biotechnology or other areas.  相似文献   
26.
27.
The construction of synthetic protein mimics is a central goal in chemistry. A known approach for achieving this goal is the self-assembly of synthetic biomimetic sequences into supramolecular structures. Obtaining different 3D structures via a simple sequence modification, however, is still challenging. Herein we present the design and synthesis of biomimetic architectures, via the self-assembly of distinct copper-peptoid duplexes. We demonstrate that changing only one non-coordinating side-chain within the peptoids—sequence-specific N-substituted glycine oligomers—leads to different supramolecular structures. Four peptoid trimers incorporating 2,2’-bipyridine and pyridine ligands, and a non-coordinating but rather a structure-directed bulky group were synthesized, and their solutions were treated with Cu2+ in a 1:1 ratio. Single-crystal X-ray analysis of the products revealed the self-assembly of each peptoid into a metallopeptoid duplex, followed by the self-assembly of multiple duplexes and their packing into a three-dimensional supramolecular architecture via hydrogen bonding and π–π interactions. Tuning the non-coordinating side-chain enables to regulate both the final structure being either a tightly packed helical rod or a nano-channel, and the pore width of the nano-channels. Importantly, all the metallopeptoids structures are stable in aqueous solution as verified by cryo-TEM measurements and supported by UV/Vis and EPR spectroscopies and by ESI-MS analysis. Thus, we could also demonstrate the selective recognition abilities of the nano-channels towards glycerol.  相似文献   
28.
Imines are important intermediates in drug synthesis. Photocatalytic aerobic oxidative coupling of amines has been considered as a clean and promising way to produce imines and has attracted great attention. Herein, we designed and synthesized a novel two-dimensional porphyrin-based covalent organic framework (Por-BC-COF) which adopts an AA stacking mode with excellent crystallinity, high Brunauer–Emmett–Teller surface areas (1200 m2 g−1), wide light absorption range (200–1300 nm) and good stability in a variety of organic solvents. Por-BC-COF can be used as a metal-free heterogeneous photocatalyst for the photocatalytic oxidation of amines to imines under visible light and red light with a high yield (97 %). This work presents a novel and efficient COF photocatalyst in the application of light-driven organic synthesis.  相似文献   
29.
Abstract . The solvothermal reaction between cuprous iodide and the rigid triangular imidazole ligand in mixed N,N′‐dimethylacetamide (DMA)‐acetonitrile solvent leads to the isolation of the 3D metal‐organic framework [(Cu4I4)3(TIPA)4] · 7DMA ( 1 ) [TIPA = tri(4‐imidazolylphenyl) amine], which was characterized by elemental analysis, IR spectroscopy, powder X‐ray diffraction, and single‐crystal X‐ray diffraction. Topologically, the structure of 1 is an unprecedented 3,3,4,4‐connected net with a point symbol of {4.8.10}2{4.82}2{42.82.102}2{84.122}. Compound 1 exhibits orange‐red photoluminescence with an emission maximum at 622 nm at room temperature.  相似文献   
30.
Because of their desired features, including very specific surface areas and designable framework architecture together with their possibility to be functionalized, Metal Framework (MOF) is a promising platform for supporting varied materials in respect of catalytic applications in water treatment. In this work, a novel visible‐light‐responsive photocatalyst that comprised BiVO4 together with MIL‐125(Ti), was synthesized by a two‐step hydrothermal approach. The characterization of as‐obtained samples as performed by X‐ray diffraction, scanning electron microscopy, high resolution transmission electron microscopy, Fourier transform infrared spectroscope, X‐ray photoelectron spectroscopy and ultraviolet‐visible diffuse reflection spectra. Rhodamine B was selected being a target for the evaluation of the photocatalytic function of as‐developed photocatalyst. The photocatalytic reaction parameters, for example, the content of BiVO4 as well as initial concentration of Rhodamine B was researched. The composite photocatalyst possessing Bi:Ti molar ratio of 3:2 brought to light the fact that the greatest photocatalytic activity had the ability to degrade 92% of Rhodamine B in 180 min. In addition to that, the BiVO4/MIL‐125(Ti) composite could keep its photocatalytic activity during the recycling test. The phenomenon of disintegration of the photo‐generated charges in the BiVO4/MIL‐125(Ti) composite was brought to discussion as well.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号