首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The understanding of structure–function relationships within synthetic biomimetic systems is a fundamental challenge in chemistry. Herein we report the direct correlation between the structure of short peptoid ligands—N-substituted glycine oligomers incorporating 2,2′-bipyridine groups—varied in their monomer sequence, and the photoluminescence of RuII centers coordinated by these ligands. Based on circular dichroism and fluorescence spectroscopy we demonstrate that while helical peptoids do not affect the fluorescence of the embedded RuII chromophore, unstructured peptoids lead to its significant decay. Transmittance electron microscopy (TEM) revealed significant differences in the arrangements of metal-bound helical versus unstructured peptoids, suggesting that only the latter can have through-space interactions with the ruthenium dye leading to its quenching. High-resolution TEM enabled the remarkable direct imaging of singular ruthenium-bound peptoids and bundles, supporting our explanation for structure-depended quenching. Moreover, this correlation allowed us to fine-tune the luminescence properties of the complexes simply by modifying the sequence of their peptoid ligands. Finally, we also describe the chiral properties of these Ru–peptoids and demonstrate that remote chiral induction from the peptoids backbone to the ruthenium center is only possible when the peptoids are both chiral and helical.  相似文献   

2.
Achieving synthetic architectures with simple structures and robust biomimetic catalytic activities remains a great challenge. Herein, we explore a facile supramolecular assembly approach to construct a dipeptide-based hierarchical nanoarchitecture with enhanced enzyme-like catalytic activity. In this nanoarchitecture, nanospheres are put in a chain-like arrangement through coordination-driven directional self-assembly. The reversible transformation of anisotropic nanochains to isotropic nanospheres switches biomimetic activity. Notably, the assembled nanoarchitecture exhibits a high enzyme-like activity and remarkable long-term stability to promote hydroquinone oxidation, superior to the natural counterpart. This work will pave the way to develop reversible and reusable supramolecular biocatalysts with ordered hierarchical structures for accelerating chemical transformations.  相似文献   

3.
Selective binding of Cu2+ in water medium by a synthetic chelator is a promising therapeutic approach towards the treatment of various diseases including cancer. Chelation of Cu2+ is well exercised, however water-soluble synthetic chelators that can selectively bind Cu2+ from a pool of competing metal ions at very high excess and/or can extract Cu2+ from a protein are hardly reported. Herein we describe the design and synthesis of an acetylated peptoid—N-substituted glycine trimer—that incorporates a picolyl group at the N-terminal, a non-coordinating but structurally directing bulky chiral phenylethyl group at the C-terminus and a modified 2,2′-bipyridine group ( PCA-Nspe ), which selectively binds Cu2+ to form a water-soluble complex. We further demonstrate that the selectivity of PCA-Nspe to Cu2+ is thermodynamically driven, leading to specific binding of Cu2+ in an aqueous solution containing up to 60-fold excess of other biologically relevant metal ions such as Zn2+, Co2+, Mn2+, Ca2+, Mg2+, K+ and Na+. Based on spectroscopic data and DFT calculations of PCA-Nspe as well as of a control peptoid having an achiral benzyl group instead of the phenylethyl side chain, we could suggest that the chiral and bulkier phenylethyl group at the C-terminus controls the preorganization of the two ligands, and this might play a role in the selectivity of PCA-Nspe . Significantly, we show that PCA-Nspe can extract Cu2+ from the natural copper binding protein metallothionein.  相似文献   

4.
Supramolecular structures with strain-stiffening properties are ubiquitous in nature but remain rare in the lab. Herein, we report on strain-stiffening supramolecular hydrogels that are entirely produced through the self-assembly of synthetic molecular gelators. The involved gelators self-assemble into semi-flexible fibers, which thereby crosslink into hydrogels. Interestingly, these hydrogels are capable of stiffening in response to applied stress, resembling biological intermediate filaments system. Furthermore, strain-stiffening hydrogel networks embedded with liposomes are constructed through orthogonal self-assembly of gelators and phospholipids, mimicking biological tissues in both architecture and mechanical properties. This work furthers the development of biomimetic soft materials with mechanical responsiveness and presents potentially enticing applications in diverse fields, such as tissue engineering, artificial life, and strain sensors.  相似文献   

5.
Collagen is an important and widely used biomaterial and therapeutic. The construction of large-scale collagen structures via the self-assembly of small collagen-related peptides has been extensively studied in the past decade. Here, we report a highly effective and simple means to assemble small synthetic collagen-related peptides into various higher-order structures by utilizing metal-histidine coordination. In this work, two short collagen-related peptides in which histidine residues were incorporated as metal binding sites were designed and chemically synthesized: HG(PPG)(9)GH (X9) and HG(PPG)(4)(PHG)(PPG)(4)GH (PHG). Circular dichroism measurements indicated that these two peptides form only marginally stable collagen triple helices but that their stability can be increased upon the addition of metal ions. Dynamic light scattering analyses, turbidity measurements, TEM, and SEM results demonstrated the metal ion-dependent self-assembly of X9 and PHG into supramolecular structures ranging from various nanofibrils to microscale spherical, laminated, and granulated assemblies. The topology and size of these higher-order structures depends both on the metal ion identity and the location of the binding sites. Most intriguingly, the assembled fibrils show similar D-periodicity to that of natural collagen. Our results demonstrate that metal-histidine coordination can serve as an effective force to induce the self-assembly of unstable collagen-related peptides into higher-order structures.  相似文献   

6.
We demonstrate that proteases can catalyze the ligation of peptidomimetic oligomers. The enzyme clostripain was used to facilitate the native ligation of N-substituted glycine oligomers, or peptoids. In addition to mediating the efficient condensation of two peptoid fragments, iterative ligation events were also performed, giving rise to concatenation products with molecular weights up to 20 kDa. Efficient ligation of peptoid foldamers may enable the chemical synthesis of biomimetic macromolecules capable of forming complex tertiary structures.  相似文献   

7.
We report the synthesis of methyl esters of 3-(4-hydroxyphenyl)propionic, 3-(3,4-dihydroxyphenyl)propionic, 3-(3,5-dihydroxyphenyl)propionic, and 3-(3,4,5-trihydroxyphenyl)propionic acids and their use in a convergent iterative strategy to prepare up to four generations of three libraries, one of 3,4,5- and two of constitutional isomeric 3,4- and 3,5-substituted 3-phenylpropyl dendrons. Each library contains 3-[3,4,5-tris(dodecyl-1-oxy)phenyl]propyl-, 3-[3,4-bis(dodecyl-1-oxy)phenyl]propyl-, 3-{3,4-bis[3-(4-dodecyl-1-oxyphenyl)propyl-1-oxy]phenyl}propyl-, and 3-{3,4,5-tris[3-(4-dodecyl-1-oxyphenyl)propyl-1-oxy]phenyl}propyl ether first-generation dendrons on their periphery and -CO2CH3, -COOH, and -CH2OH groups at their apex. Regardless of their generation number and their periphery, internal, and apex structures, these dendrons self-assemble into supramolecular dendrimers that self-organize into all periodic and quasi-periodic assemblies encountered previously and in several unencountered with architecturally related benzyl ether-based supramolecular dendrimers. A variety of porous columnar lattices that were previously obtained only from dendritic dipeptides and hollow supramolecular spheres were also discovered from these building blocks. The more flexible and less compact 3-phenylpropyl ether repeat units are stable under acidic conditions, facilitate a simpler synthetic strategy, provide faster dynamics of self-assembly into higher-order supramolecular structures of larger dimensions, exhibit lower transition temperatures than the corresponding benzyl ether homologues, and demonstrate the generality of the self-assembly concept based on amphiphilic dendrons.  相似文献   

8.
Metal–ligand coordination is a key interaction in the self‐assembly of both biopolymers and synthetic oligomers. Although the binding of metal ions to synthetic proteins and peptides is known to yield high‐order structures, the self‐assembly of peptidomimetic molecules upon metal binding is still challenging. Herein we explore the self‐assembly of three peptoid trimers bearing a bipyridine ligand at their C‐terminus, a benzyl group at their N‐terminus, and a polar group (N‐ethyl‐R) in the middle position (R=OH, OCH3, or NH2) upon Cu2+ coordination. X‐ray diffraction analysis revealed unique, highly symmetric, dinuclear cyclic structure or aqua‐bridged dinuclear double‐stranded peptoid helicates, formed by the self‐assembly of two peptoid molecules with two Cu2+ ions. Only the macrocycle with the highest number of intermolecular hydrogen bonds is stable in solution, while the other two disassemble to their corresponding monometallic complexes.  相似文献   

9.
Side-chain functionalized polymers have a profound impact on complex materials synthesis with a variety of applications ranging from liquid crystalline and electro-optical materials to drug delivery systems. In the last decade, the use of self-assembly towards the synthesis of side-chain functionalized polymers has been investigated extensively as a result of its modular character and ease of synthesis. This tutorial review describes recent advances in the literature and establishes basic design principles and synthetic approaches towards the fabrication of supramolecular materials that are based on side-chain functionalized polymers.  相似文献   

10.
Understanding the relationship between molecular design and packing modes constitutes one of the major challenges in self-assembly and is essential for the preparation of functional materials. Herein, we have achieved high precision control over the supramolecular packing of amphiphilic PtII complexes by systematic variation of the hydrophilic side-chain length. A novel approach of general applicability based on complementary X-ray diffraction and solid-state NMR spectroscopy has allowed us to establish a clear correlation between molecular features and supramolecular ordering. Systematically increasing the side-chain length gradually increases the steric demand and reduces the extent of aromatic interactions, thereby inducing a gradual shift in the molecular packing from parallel to a long-slipped organization. Notably, our findings highlight the necessity of advanced solid-state NMR techniques to gain structural information for supramolecular systems where single-crystal growth is not possible. Our work further demonstrates a new molecular design strategy to modulate aromatic interaction strengths and packing arrangements that could be useful for the engineering of functional materials based on PtII and aromatic molecules.  相似文献   

11.
肽基超分子胶体是基于肽分子间超分子作用,自发形成且具有有序分子排布及规整结构,兼具传统胶体及超分子特性的组装体系。利用超分子弱相互作用构筑功能性胶体,不仅是人们对生命组装进程深入理解的有效手段,也是实现优异的超分子材料的重要途径。肽分子具有组成明确、性能可调、生物安全性高及可降解等优势,是超分子化学、胶体与界面化学领域重要的组装基元。基于肽的超分子自组装,能够实现多尺度、多功能的生物胶体的构筑,被广泛应用于医药、催化、能源等领域。如何通过对肽序列的设计及分子间作用力的调控,实现对胶体结构和功能的精确控制,是近年来研究的重要课题之一。从分子尺度研究和揭示超分子胶体的组装过程及物理化学机制,探究胶体结构与功能的关系,是实现超分子结构和功能化的重要内容。本文基于"分子间作用的调控"及"结构与功能的关系"两个基本科学问题,系统地综述了肽基超分子胶体的组装机制、结构与功能,以及研究现状。  相似文献   

12.
One of the most fascinating subjects in areas such as nanoscience and biomimetic chemistry is concerned with the construction of novel supramolecular nanoscopic architectures with well defined shapes and functions. Supramolecular assemblies of aromatic rod molecules provide a facile entry into this area. Aromatic rigid rod molecules consisting of hydrophilic flexible chains, in aqueous solution can self-assemble into a variety of supramolecular structures through mutual interactions between aromatic rod molecules and water, including hydrophobic and hydrophilic interactions and pi-pi interaction. The supramolecular architecture in water can be manipulated by variation of the shape of the rigid segments, as well as the relative volume fraction of the flexible segment. The rigid aromatic segments have significant photonic and electronic properties. The self-assembly of aromatic rod molecules in water, therefore, can provide a strategy for the construction of well-defined and stable nanometer-size structures with chemical functionalities and physical properties as advanced materials for photonic, electronic and biological applications.  相似文献   

13.
The single crystal structures of five co-crystals formed by the reaction of different iodide and bromide salts with di- and triiodoperfluorobenzenes (I-ArF) are reported. All of these perfluorocarbon-hydrocarbon systems are heteromeric three-component systems, wherein the weakly coordinating cations favour the formation of naked halides, which function as electron-donors towards the I-ArF modules. The analysis of the crystal structures shows that I?I-ArF, and Br?I-ArF halogen bonds (XBs) control the self-assembly of the obtained supramolecular architectures. 2D and 3D supramolecular networks have been obtained, wherein naked iodide and bromide anions act as tri-, tetra-, or pentadentate nodes. The selected examples demonstrate that I-ArF modules can be particularly robust and reliable tectons for XB-based coordination of halide ions and afford supramolecular architectures in a rational and predictable way.  相似文献   

14.
Beyond phenomenon, self-assembly of synthetic molecules, is now becoming an essential tool to design supramolecular materials not only in the thermodynamically stable state but also in kinetically trapped states. However, an approach to design complex self-assembly processes comprising different types of self-assembled states remains elusive. Herein, an example of such systems is demonstrated based on a unique supramolecular polymer mediated by supermacrocyclization of hydrogen-bonding π-conjugated molecules. By adding an aromatic solvent into nonpolar solutions of the monomer, spontaneous nucleation triggered by supermacrocyclization was suppressed so that isothermal supramolecular polymerization could be achieved from kinetically formed topological variants and amorphous agglomerates to afford helicoidal structures hitherto obtainable only with very slow cooling of a hot solution. By increasing the proportion of aromatic solvent further, another self-assembly path was found, based on competing extended hydrogen-bonded motifs affording crystalline nanowires.  相似文献   

15.
Qiang Yan  Yue Zhao 《Chemical science》2015,6(7):4343-4349
Designing synthetic polymer assemblies that can sense a biological signal to mimic cell activities is elusive. We develop a class of block copolymer containing bioinspired host units as supramolecular catchers for the highly-selective capture of adenosine-5′-triphosphate (ATP). Driven by ATP, these block copolymers undergo a stepwise self-assembly and exhibit cascading deformation into highly-ordered nanostructures via the specific recognition effect between ATP and the receptor. By modulating the ATP concentration, one can precisely control the biomimetic evolution of these assemblies in diverse dimensionalities and geometries, like certain organellar deformations. Moreover, the ATP/polymer hybrid aggregates can be reversibly disassembled in response to phosphatase. The special ability of the artificial assemblies to sense intracellular bioactivators can offer new insight into bio-responsive nanomaterials for cellular applications.  相似文献   

16.
Peptide‐mediated self‐assembly is a prevalent method for creating highly ordered supramolecular architectures. Herein, we report the first example of orthogonal C?X???X?C/C?X???π halogen bonding and hydrogen bonding driven crystalline architectures based on synthetic helical peptides bearing hybrids of l ‐sulfono‐γ‐AApeptides and natural amino acids. The combination of halogen bonding, intra‐/intermolecular hydrogen bonding, and intermolecular hydrophobic interactions enabled novel 3D supramolecular assembly. The orthogonal halogen bonding in the supramolecular architecture exerts a novel mechanism for the self‐assembly of synthetic peptide foldamers and gives new insights into molecular recognition, supramolecular design, and rational design of biomimetic structures.  相似文献   

17.
We show a simple method to control both the stability and the self-assembly behavior of DNA structures. By connecting two adjacent duplexes with small synthetic linkers, factors such as linker rigidity and DNA strand orientation can increase the thermal denaturation temperature of 17 base-pair duplexes by up to 10 °C, and significantly increase the cooperativity of melting of the two duplexes. The same DNA sequence can thus be tuned to melt at vastly different temperatures by selecting the linker structure and DNA-to-linker connectivity. In addition, a small rigid m-triphenylene linker directly affects the self-assembly product distribution. With this linker, changes in the orientation of the linked strands (e.g., 5'3' vs 3'3') can lead to dramatic changes in the self-assembly behavior, from the formation of cyclic dimer and tetramer to higher-order oligomers. These variations can be readily predicted using a simple strand-end alignment model.  相似文献   

18.
Natural Aquaporin (AQP) channels are efficient water translocating proteins, rejecting ions. Inspired by this masterpiece of nature, Artificial Water Channels (AWCs) with controlled functional structures, can be potentially used to mimic the AQPs to a certain extent, offering flexible avenues toward biomimetic membranes for water purification. The objective of this paper is to trace the historical development and significant advancements of current reported AWCs. Meanwhile, we attempt to reveal important structural insights and supramolecular self-assembly principles governing the selective water transport mechanisms, toward innovative AWC-based biomimetic membranes for desalination.  相似文献   

19.
A new family of alkynylated, amphiphilic dendrimers consisting of amidoamine linkers connected to 5,5′-functionalized 2,2′-bipyridine cores has been developed and evaluated in the formation of metallodendrimers of different generations and in self-assembly protocols. A convergent synthetic strategy was applied to provide dumbbell-shaped amphiphilic dendrimers, where the 2,2′-bipyridine cores could be coordinated to FeII centers to afford corresponding metallodendrimers. The ability of the metallic- and non-metallic dendritic structures to self-assemble into functional supramolecular aggregates were furthermore evaluated in aqueous solution. Spherical aggregates with sizes of a few hundred nanometers were generally produced, where controlled disassembly of the metallodendrimers through decomplexation could be achieved.  相似文献   

20.
The self-assembly of amphiphilic molecules into fibrous structures has been the subject of numerous studies over past decades due to various current and promising technical applications. Although very different in their head group chemistry many natural as well as synthetic amphiphilic compounds derived from carbohydrates, carbocyanine dyes, or amino acids tend to form fibrous structures by molecular self-assembly in water predominantly twisted ribbons or tubes. Often a transition between these assembly structures is observed, which is a phenomenon already theoretically approached by Wolfgang Helfrich and still focus point in current research. With the development of suitable sample preparation and electron optical imaging techniques, cryogenic transmission electron microscopy (cryo-TEM) in combination with three-dimensional (3D) reconstruction techniques has become a particular popular direct characterization technique for supramolecular assemblies in general. Here we review the recent progress in deriving precise structural information from cryo-TEM data of particularly fibrous structures preferably in three dimensions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号