首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8798篇
  免费   3034篇
  国内免费   6664篇
化学   10613篇
晶体学   717篇
力学   1129篇
综合类   208篇
数学   118篇
物理学   5711篇
  2024年   105篇
  2023年   404篇
  2022年   431篇
  2021年   552篇
  2020年   421篇
  2019年   575篇
  2018年   376篇
  2017年   565篇
  2016年   585篇
  2015年   626篇
  2014年   1271篇
  2013年   1075篇
  2012年   930篇
  2011年   1031篇
  2010年   996篇
  2009年   1041篇
  2008年   1042篇
  2007年   867篇
  2006年   988篇
  2005年   937篇
  2004年   808篇
  2003年   730篇
  2002年   521篇
  2001年   429篇
  2000年   294篇
  1999年   276篇
  1998年   154篇
  1997年   152篇
  1996年   83篇
  1995年   81篇
  1994年   45篇
  1993年   25篇
  1992年   28篇
  1991年   13篇
  1990年   14篇
  1989年   8篇
  1988年   4篇
  1987年   1篇
  1986年   2篇
  1985年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
采用水热法,在乙二胺和EDTA-2Na作用下,成功制备了CdS@g-C3N4复合核壳纳米微粒,并探讨了其生长机理。结果显示:CdS@g-C3N4复合核壳纳米微粒的比表面积是纯CdS纳米颗粒的14.0倍,具有良好的光催化活性和光稳定性。当反应条件为180℃、4 h、CdS/g-C3N4质量比1.9∶1时,CdS@g-C3N4的可见光催化性能最好,300 W氙灯光照2 h,RhB的降解率达95.2%,明显高于纯CdS。重复使用3次后,CdS@g-C3N4形貌、结构及光催化性能无明显变化。  相似文献   
992.
通过置换法在铝板上快速制备了一种即插即用型的Al/Ag纳米表面增强拉曼光谱(SERS)活性基底。结果表明该SERS基底较好地解决了银纳米颗粒在支撑物质上的吸附问题,能够快速实现对三聚氰胺的检测,而且具有操作简单、成本低、无损伤检测等优点,最低检测浓度能达到10^-7 mol·L^-1,满足国家食品安全要求的最低标准。另外,Al/Ag活性基底对三聚氰胺检测具有较高的拉曼测试重现性,连续测定15 h的过程中拉曼强度波动不大;且该Al/Ag活性基底能够在三乙醇胺、N,N-二甲基甲酰胺和1,2-丙二胺等胺类物质中实现对三聚氰胺的选择性检测。  相似文献   
993.
采用热解柠檬酸法制备碳点(CDs),并将之与表面无包裹剂的CdS纳米晶(CdS NCs)超声复合制备CdS纳米晶@碳点(CdS NCs@CDs)复合物。研究了复合物膜阴极电致化学发光(ECL),探讨了CDs对CdS纳米晶膜ECL增强的机理。CDs分散性良好、尺寸在1.5~4 nm之间;与粒径约为4 nm的CdS纳米晶按体积比2∶3复合后,在360 nm光激发下复合物具有最强的荧光发射且表现为CDs的荧光。同时,复合物膜产生归属于激发态CdS纳米晶的最强的ECL发射,且ECL发光峰起置电势正移至-1.05 V。复合物膜的ECL发射是pH依赖的,在pH值为6时,复合物膜具有最大的ECL强度,为CdS纳米晶膜ECL强度的19倍。这种ECL增强源于CDs能束缚大量电子产生局域电场从而促进近邻CdS纳米晶激发态的形成与弛豫。  相似文献   
994.
首先,采用高温固相法制备层状前驱体CsTi_2NbO_7,再通过与硝酸进行质子交换形成层状HTi_2NbO_7;其次,在四丁基氢氧化铵(TBAOH)中剥离层状HTi_2NbO_7以获得HTi_2NbO_7纳米片;然后与尿素混合并高温焙烧;最后成功地得到了氮掺杂的HTi_2NbO_7纳米片光催化剂。使用粉末X射线衍射(XRD)、扫描电子显微镜(SEM)、高分辨透射电子显微镜(HRTEM)、X射线光电子能谱(XPS)、紫外-可见漫反射吸收光谱(UV-Vis DRS)以及N_2吸附-脱附测试等方式对所制备样品的晶体结构、形貌、比表面积、孔分布和光吸收能力等进行详细的表征。研究表明,氮掺杂后减小了HTi_2NbO_7的禁带宽度,从而使光响应范围扩展到可见光区域;掺杂的氮原子主要位于Ti_2NbO_7-薄片的间隙位置,并与氢离子化学键合;与N掺杂的层状HTi_2NbO_7相比,N掺杂的HTi_2NbO_7纳米片具有更大的比表面积和更丰富的介孔结构,这是由于钛铌酸纳米片相对松散且不规则的排列。因此,在降解罗丹明B(RhB)溶液时,N掺杂的HTi_2NbO_7纳米片比N掺杂的层状HTi_2NbO_7具有更加优异的可见光催化活性。  相似文献   
995.
通过简便的两步直接固相反应,即在室温下的固相自组装反应制备Ni席夫碱配合物前驱体,然后通过高温固相热解碳化和硒化反应,原位制备了N,Se共掺杂碳限域的NiSe纳米晶复合物。采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、X射线光电子能谱(XPS)和热重分析(TGA)等表征技术分别对其物相、形貌结构、组分和含量等进行分析,并通过循环伏安、恒电流充放电和电化学阻抗谱等方法测试其电化学储钠性能。研究结果表明,复合物中NiSe粒子的平均尺寸为100 nm,被均匀限域在N,Se共掺杂的碳基体中;得益于该结构的优势,复合物作为钠离子电池负极材料时,在0.1 A·g~(-1)的电流密度下充放电循环100次后仍保持291 mAh·g~(-1)的可逆充电比容量,保持了首圈充电比容量的88%。同时,在5 A·g~(-1)的电流密度下,可逆充电比容量为197 mAh·g~(-1)。  相似文献   
996.
采用脱合金化结合胶体聚沉的方法制备了纳米多孔Ni/RuO_2、Ni-Mo/RuO_2复合电极材料。通过X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电镜(SEM)、透射电镜(TEM)对电极材料的物相、元素组态、形貌结构、孔径大小和结晶度进行表征,并通过线性扫描伏安、交流阻抗以及循环伏安等方法测试多孔电极的电催化析氢性能。分析结果显示:RuO_2由于聚沉作用包覆在Ni基合金的骨架表面。Mo的加入使Ni-Mo合金非晶化的同时,促使其骨架细化,形成双连续的纳米多孔结构。Mo与RuO_2的加入以及Mo含量的增加均提高了电催化析氢性能。纳米多孔Ni_(2.5)Mo_(2.5)/RuO_2复合电极在50 mA·cm~(-2)的电流密度下析氢过电位为182 mV。  相似文献   
997.
通过静电吸引策略将具有高度分散性的原子精确纳米团簇[Pd3Cl(PPh2)2(PPh3)3]+(Pd3Cl)负载在介孔SBA-15棒上。结构明确的Pd3Cl/SBA-15催化剂在以水作为溶剂以及温和的反应条件下对催化Sonogashira碳-碳偶联反应展现了较好的催化性能以及循环性。在此基础上,我们研究了Pd3Cl团簇结构与性能之间的关系,并证实内核的Pdδ+(0<δ<2)与配体之间的协同效应是催化反应的关键。  相似文献   
998.
通过纳米浇铸法合成了有序介孔炭CMK-3,再通过浸渍法制备了Cu/CMK-3催化剂,并将其用于气相甲醇氧化羰基化反应。N2吸附-脱附测试、X射线衍射(XRD)以及透射电镜(TEM)的表征结果表明,Cu/CMK-3具有序介孔结构,活性Cu物种均匀分散于CMK-3的表面及孔道中,粒径为10~20 nm,远小于相同条件下制备的铜/活性炭(Cu/AC)催化剂。固定床反应器的活性评价结果显示450℃下制备的Cu/CMK-3催化活性最高,反应10 h内碳酸二甲酯(DMC)的时空收率(STY)达到286 mg·g^-1·h^-1,选择性为76%。长周期活性评价结果表明Cu/CMK-3稳定性较相同条件下制备的Cu/AC有大幅提高,50 h内DMC的STY降低了20%,75 h内降低了28%。  相似文献   
999.
以甲苯为溶剂、硅烷偶联剂为改性剂对纳米氧化锆进行接枝改性。探究了改性剂硅烷偶联剂KH-570的体积百分含量、反应温度和反应时间对纳米氧化锆表面改性接枝效果的影响。采用扫描电镜、能谱分析、傅里叶变换红外光谱(FTIR)、粒径分析等手段表征改性前后纳米氧化锆粉体。结果表明,当硅烷偶联剂KH-570的体积百分含量为10%,反应温度80℃,反应时间30min时,纳米氧化锆表面接枝改性效果最好。此时,硅烷偶联剂KH-570与纳米氧化锆之间形成了化学结合。  相似文献   
1000.
设计了一个包含胶体化学方法制备金属纳米粒子及其作为异相催化剂催化氧化还原反应的动力学过程等内容的本科生综合化学实验。首先采用晶种生长法合成了不同尺寸的球状和片状银纳米粒子,然后经过离心纯化后作为异相催化剂催化硼氢化钠还原4-硝基苯酚的反应,研究了催化反应动力学过程,分析了催化反应的表观反应速率常数和催化剂的活性。本实验可以锻炼学生制备纳米材料和跟踪反应动力学进程的能力,使学生进一步理解异相催化反应机理、熟悉光谱仪器的应用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号