首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1330篇
  免费   151篇
  国内免费   30篇
化学   1363篇
晶体学   3篇
力学   2篇
综合类   17篇
数学   19篇
物理学   107篇
  2024年   2篇
  2023年   23篇
  2022年   39篇
  2021年   59篇
  2020年   99篇
  2019年   40篇
  2018年   26篇
  2017年   33篇
  2016年   63篇
  2015年   71篇
  2014年   63篇
  2013年   108篇
  2012年   95篇
  2011年   75篇
  2010年   75篇
  2009年   76篇
  2008年   70篇
  2007年   88篇
  2006年   83篇
  2005年   65篇
  2004年   50篇
  2003年   28篇
  2002年   38篇
  2001年   13篇
  2000年   19篇
  1999年   29篇
  1998年   10篇
  1997年   16篇
  1996年   7篇
  1995年   15篇
  1994年   4篇
  1993年   3篇
  1992年   6篇
  1991年   4篇
  1990年   4篇
  1989年   4篇
  1988年   1篇
  1985年   3篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1975年   1篇
排序方式: 共有1511条查询结果,搜索用时 218 毫秒
71.
72.
Nucleic acid quadruplexes are proposed to play a role in the regulation of gene expression, are often present in aptamers selected for specific binding functions and have potential applications in medicine and biotechnology. Therefore, understanding their structure and thermodynamic properties and designing highly stable quadruplexes is desirable for a variety of applications. Here, we evaluate DNA→RNA substitutions in the context of a monomolecular, antiparallel quadruplex, the thrombin-binding aptamer (TBA, GGTTGGTGTGGTTGG) in the presence of either K+ or Sr2+. TBA predominantly folds into a chair-type configuration containing two G-tetrads, with G residues in both syn and anti conformation. All chimeras with DNA→RNA substitutions (G→g) at G residues requiring the syn conformation demonstrated strong destabilization. In contrast, G→g substitutions at Gs with anti conformation increased stability without affecting the monomolecular chair-type topology. None of the DNA→RNA substitutions in loop positions affected the quadruplex topology; however, these substitutions varied widely in their stabilizing or destabilizing effects in an unpredictable manner. This analysis allowed us to design a chimeric DNA/RNA TBA construct that demonstrated substantially improved stability relative to the all-DNA construct. These results have implications for a variety of quadruplex-based applications including for the design of dynamic nanomachines.  相似文献   
73.
In this review, the experimental set-up and functional characteristics of single-wavelength and broad-band femtosecond upconversion spectrophotofluorometers developed in our laboratory are described. We discuss applications of this technique to biophysical problems, such as ultrafast fluorescence quenching and solvation dynamics of tryptophan, peptides, proteins, reduced nicotinamide adenine dinucleotide (NADH), and nucleic acids. In the tryptophan dynamics field, especially for proteins, two types of solvation dynamics on different time scales have been well explored: ~1 ps for bulk water, and tens of picoseconds for “biological water”, a term that combines effects of water and macromolecule dynamics. In addition, some proteins also show quasi-static self-quenching (QSSQ) phenomena. Interestingly, in our more recent work, we also find that similar mixtures of quenching and solvation dynamics occur for the metabolic cofactor NADH. In this review, we add a brief overview of the emerging development of fluorescent RNA aptamers and their potential application to live cell imaging, while noting how ultrafast measurement may speed their optimization.  相似文献   
74.
We report a label-free and simple approach for the detection of glycoprotein-120 (gp-120) using an aptamer-based liquid crystals (LCs) biosensing platform. The LCs are supported on the surface of a modified glass slide with a suitable amount of B40t77 aptamer, allowing the LCs to be homeotropically aligned. A pronounced topological change was observed on the surface due to a specific interaction between B40t77 and gp-120, which led to the disruption of the homeotropic alignment of LCs. This results in a dark-to-bright transition observed under a polarized optical microscope. With the developed biosensing platform, it was possible to not only identify gp-120, but obtained results were analyzed quantitatively through image analysis. The detection limit of the proposed biosensing platform was investigated to be 0.2 µg/mL of gp-120. Regarding selectivity of the developed platform, no response could be detected when gp-120 was replaced by other proteins, such as bovine serum albumin (BSA), hepatitis A virus capsid protein 1 (Hep A VP1) and immunoglobulin G protein (IgG). Due to attributes such as label-free, high specificity and no need for instrumental read-out, the presented biosensing platform provides the potential to develop a working device for the quick detection of HIV-1 gp-120.  相似文献   
75.
We report model calculations on DNA single strands which describe the equilibrium dynamics and kinetics of hairpin formation and melting. Modeling is at the level of single bases. Strand rigidity is described in terms of simple polymer models; alternative calculations performed using the freely rotating chain and the discrete Kratky-Porod models are reported. Stem formation is modeled according to the Peyrard-Bishop-Dauxois Hamiltonian. The kinetics of opening and closing is described in terms of a diffusion-controlled motion in an effective free-energy landscape. Melting profiles, dependence of melting temperature on loop length, and kinetic time scales are in semiquantitative agreement with experimental data obtained from fluorescent DNA beacons forming poly(T) loops. Variation in strand rigidity is not sufficient to account for the large activation enthalpy of closing and the strong loop length dependence observed in hairpins forming poly(A) loops. Implications for modeling single strands of DNA or RNA are discussed.  相似文献   
76.
77.
The ability to quantitate and visualize microRNAs (miRNAs) in situ in single cells would greatly facilitate the elucidation of miRNA‐mediated regulatory circuits and their disease associations. A toehold‐initiated strand‐displacement process was used to initiate rolling circle amplification of specific miRNAs, an approach that achieves both stringent recognition and in situ amplification of the target miRNA. This assay, termed toehold‐initiated rolling circle amplification (TIRCA), can be utilized to identify miRNAs at physiological temperature with high specificity and to visualize individual miRNAs in situ in single cells within 3 h. TIRCA is a competitive candidate technique for in situ miRNA imaging and may help us to understand the role of miRNAs in cellular processes and human diseases in more detail.  相似文献   
78.
The hairpin structure is one of the most common secondary structures in RNA and holds a central position in the stream of RNA folding from a non‐structured RNA to structurally complex and functional ribonucleoproteins. Since the RNA secondary structure is strongly correlated to the function and can be modulated by the binding of small molecules, we have investigated the modulation of RNA folding by a ligand‐assisted formation of loop–loop complexes of two RNA hairpin loops. With a ligand (NCT6), designed based on the ligand binding to the G–G mismatches in double‐stranded DNA, we successfully demonstrated the formation of both inter‐ and intra‐molecular NCT6‐assisted complex of two RNA hairpin loops. NCT6 selectively bound to the two hairpin loops containing (CGG)3 in the loop region. Native polyacrylamide gel electrophoresis analysis of two doubly‐labeled RNA hairpin loops clearly showed the formation of intermolecular NCT6‐assisted loop–loop complex. Förster resonance energy‐transfer studies of RNA constructs containing two hairpin loops, in which each hairpin was labeled with Alexa488 and Cy3 fluorophores, showed the conformational change of the RNA constructs upon binding of NCT6. These experimental data showed that NCT6 simultaneously bound to two hairpin RNAs at the loop region, and can induce the conformational change of the RNA molecule. These data strongly support that NCT6 functions as molecular glue for two hairpin RNAs.  相似文献   
79.
A complete set of new photolabile nucleoside phosphoramidites were synthesized, then site‐specifically incorporated into sense or antisense strands of siRNA for phosphate caging. Single caging modification was made along siRNA strands and their photomodulation of gene silencing were examined by using the firefly luciferase reporter gene. Several key phosphate positions were then identified. Furthermore, multiple caging modifications at these key positions led to significantly enhanced photomodulation of gene silencing activity, suggesting a synergistic effect. The caging group on both the terminally phosphate‐caged siRNA and the single‐stranded caged RNA has comparatively high stability, whereas hydrolysis of the caged group from the internally caged siRNA was observed, irrespective of the presence of Mg2+. Molecular dynamic simulations demonstrated that enhanced hydrolysis of the caging group on internally phosphate‐caged siRNAs was due to easy fragmentation of the caging group upon formation of the pentavalent intermediate of the phosphotriester with attack by water. The caging group in the terminally phosphate‐caged siRNA or single‐stranded caged RNA prefers to form π–π stacks with nearby nucleobases. In addition to providing explanations for previous observations, this study sheds further light on the design of caged oligonucleotides and indicates the direction of future development of nucleic acid drugs with phosphate modifications.  相似文献   
80.
Phosphoryl transfer reactions are ubiquitous in biology and the understanding of the mechanisms whereby these reactions are catalyzed by protein and RNA enzymes is central to reveal design principles for new therapeutics. Two of the most powerful experimental probes of chemical mechanism involve the analysis of linear free energy relations (LFERs) and the measurement of kinetic isotope effects (KIEs). These experimental data report directly on differences in bonding between the ground state and the rate‐controlling transition state, which is the most critical point along the reaction free energy pathway. However, interpretation of LFER and KIE data in terms of transition‐state structure and bonding optimally requires the use of theoretical models. In this work, we apply density‐functional calculations to determine KIEs for a series of phosphoryl transfer reactions of direct relevance to the 2′‐O‐transphosphorylation that leads to cleavage of the phosphodiester backbone of RNA. We first examine a well‐studied series of phosphate and phosphorothioate mono‐, di‐ and triesters that are useful as mechanistic probes and for which KIEs have been measured. Close agreement is demonstrated between the calculated and measured KIEs, establishing the reliability of our quantum model calculations. Next, we examine a series of RNA transesterification model reactions with a wide range of leaving groups in order to provide a direct connection between observed Brønsted coefficients and KIEs with the structure and bonding in the transition state. These relations can be used for prediction or to aid in the interpretation of experimental data for similar non‐enzymatic and enzymatic reactions. Finally, we apply these relations to RNA phosphoryl transfer catalyzed by ribonuclease A, and demonstrate the reaction coordinate–KIE correlation is reasonably preserved. A prediction of the secondary deuterium KIE in this reaction is also provided. These results demonstrate the utility of building up knowledge of mechanism through the systematic study of model systems to provide insight into more complex biological systems such as phosphoryl transfer enzymes and ribozymes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号