首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Enzyme-catalyzed phosphoryl transfer reactions have frequently been suggested to proceed through transition states that are altered from their solution counterparts, with the alterations presumably arising from interactions with active-site functional groups. In particular, the phosphate monoester hydrolysis reaction catalyzed by Escherichia coli alkaline phosphatase (AP) has been the subject of intensive scrutiny. Recent linear free energy relationship (LFER) studies suggest that AP catalyzes phosphate monoester hydrolysis through a loose transition state, similar to that in solution. To gain further insight into the nature of the transition state and active-site interactions, we have determined kinetic isotope effects (KIEs) for AP-catalyzed hydrolysis reactions with several phosphate monoester substrates. The LFER and KIE data together provide a consistent picture for the nature of the transition state for AP-catalyzed phosphate monoester hydrolysis and support previous models suggesting that the enzymatic transition state is similar to that in solution. Moreover, the KIE data provides unique information regarding specific interactions between the transition state and the active-site Zn2+ ions. These results provide strong support for a model in which electrostatic interactions between the bimetallo Zn2+ site and a nonbridging phosphate ester oxygen atom make a significant contribution to the large rate enhancement observed for AP-catalyzed phosphate monoester hydrolysis.  相似文献   

2.
Detailed understandings of the reaction mechanisms of RNA catalysis in various environments can have profound importance for many applications, ranging from the design of new biotechnologies to the unraveling of the evolutionary origin of life. An integral step in the nucleolytic RNA catalysis is self‐cleavage of RNA strands by 2′‐O‐transphosphorylation. Key to elucidating a reaction mechanism is determining the molecular structure and bonding characteristics of transition state. A direct and powerful probe of transition state is measuring isotope effects on biochemical reactions, particularly if we can reproduce isotope effect values from quantum calculations. This article significantly extends the scope of our previous joint experimental and theoretical work in examining isotope effects on enzymatic and nonenzymatic 2′‐O‐transphosphorylation reaction models that mimic reactions catalyzed by RNA enzymes (ribozymes), and protein enzymes such as ribonuclease A (RNase A). Native reactions are studied, as well as reactions with thio substitutions representing chemical modifications often used in experiments to probe mechanism. Here, we report and compare results from eight levels of electronic‐structure calculations for constructing the potential energy surfaces in kinetic and equilibrium isotope effects (KIE and EIE) computations, including a “gold‐standard” coupled‐cluster level of theory [CCSD(T)]. In addition to the widely used Bigeleisen equation for estimating KIE and EIE values, internuclear anharmonicity and quantum tunneling effects were also computed using our recently developed ab initio path‐integral method, that is, automated integration‐free path‐integral method. The results of this work establish an important set of benchmarks that serve to guide calculations of KIE and EIE for RNA catalysis. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
To assess the contribution of physical features to enzyme catalysis, the enzymatic reaction has to be compared to a relevant uncatalyzed reaction. While such comparisons have been conducted for some hydrolytic and radical reactions, it is most challenging for biological hydride transfer and redox reactions in general. Here, the same experimental tools used to study the H-tunneling and coupled motions for enzymatic hydride transfer between two carbons were used in the study of an uncatalyzed model reaction. The enzymatic oxidations of benzyl alcohol and its substituted analogues mediated by alcohol dehydrogenases were compared to the oxidations by 9-phenylxanthylium cation (PhXn(+)). The PhXn(+)serves as an NAD(+) model, while the solvent, acetonitrile, models the protein environment. Experimental comparisons included linear free energy relations with Hammett reaction constant (ρ) of zero versus -2.7; temperature-independent versus temperature-dependent primary KIEs; deflated secondary KIEs with deuteride transfer (i.e., primary-secondary coupled motion) versus no coupling between secondary KIEs and H- or D-transfer; and large versus small secondary KIEs for the enzymatic versus uncatalyzed alcohol oxidation. Some of the differences may come from differences in the order of microscopic steps between the catalyzed versus uncatalyzed reactions. However, several of these comparative experiments indicate that in contrast to the uncatalyzed reaction the transition state of the enzymatic reaction is better reorganized for H-tunneling and its H-donor is better rehybridized prior to the C-H→C transfer. These findings suggest an important role for these physical features in enzyme catalysis.  相似文献   

4.
The catalytic promiscuity of E. coli alkaline phosphatase (AP) and many other enzymes provides a unique opportunity to dissect the origin of enzymatic rate enhancements via a comparative approach. Here, we use kinetic isotope effects (KIEs) to explore the origin of the 109-fold greater catalytic proficiency by AP for phosphate monoester hydrolysis relative to sulfate monoester hydrolysis. The primary 18O KIEs for the leaving group oxygen atoms in the AP-catalyzed hydrolysis of p-nitrophenyl phosphate (pNPP) and p-nitrophenylsulfate (pNPS) decrease relative to the values observed for nonenzymatic hydrolysis reactions. Prior linear free energy relationship results suggest that the transition states for AP-catalyzed reactions of phosphate and sulfate esters are "loose" and indistinguishable from that in solution, suggesting that the decreased primary KIEs do not reflect a change in the nature of the transition state but rather a strong interaction of the leaving group oxygen atom with an active site Zn2+ ion. Furthermore, the primary KIEs for the two reactions are identical within error, suggesting that the differential catalysis of these reactions cannot be attributed to differential stabilization of the leaving group. In contrast, AP perturbs the KIE for the nonbridging oxygen atoms in the reaction of pNPP but not pNPS, suggesting a differential interaction with the transferred group in the transition state. These and prior results are consistent with a strong electrostatic interaction between the active site bimetallo Zn2+ cluster and one of the nonbridging oxygen atoms on the transferred group. We suggest that the lower charge density of this oxygen atom on a transferred sulfuryl group accounts for a large fraction of the decreased stabilization of the transition state for its reaction relative to phosphoryl transfer.  相似文献   

5.
Kinetic isotope effects are determined for the enzyme‐catalyzed Claisen rearrangement of chorismate to prephenate using computational methods. The calculated kinetic isotope effects (KIEs) compare reasonably with the few available experimental values with both the theory and experiment obtaining a large KIE for the ether oxygen, indicating large polarization of the transition‐state geometry. Because there is a question of the extent that the experimental rate constants are for chemistry as the rate‐limiting step, the KIEs for all the atoms of the substrate are reported with the exception of the carboxylate groups. A substantial number of large regular and inverse isotope effects are predicted for the hydrogens on the cyclohexadienyl ring related to activation of the reactant and charge reorganization in the transition state. A large KIE is predicted for the hydrogen atom bound to the ether carbon atom because the largest valency change and charge transfer occurs at the ether bond in both the reactant and tansition state. Observation of the overall pattern of predicted KIEs would ensure that conditions are favorable for the rate‐limiting chemistry. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem 94: 287–292, 2003  相似文献   

6.
Kinetic isotope effects (KIEs) were measured for methyl glucoside (4) hydrolysis on unlabeled material by NMR. Twenty-eight (13)C KIEs were measured on the acid-catalyzed hydrolysis of alpha-4 and beta-4, as well as enzymatic hydrolyses with yeast alpha-glucosidase and almond beta-glucosidase. The 1-(13)C KIEs on the acid-catalyzed reactions of alpha-4 and beta-4, 1.007(2) and 1.010(6), respectively, were in excellent agreement with the previously reported values (1.007(1), 1.011(2): Bennet and Sinnott, J. Am. Chem. Soc. 1986, 108, 7287). Transition state analysis of the acid-catalyzed reactions using the (13)C KIEs, along with the previously reported (2)H KIEs, confirmed that both reactions proceed with a stepwise D(N)A(N) mechanism and showed that the glucosyl oxocarbenium ion intermediate exists in an E(3) sofa or (4)H(3) half-chair conformation. (13)C KIEs showed that the alpha-glucosidase reaction also proceeded through a D(N)*A(N) mechanism, with a 1-(13)C KIE of 1.010(4). The secondary (13)C KIEs showed evidence of distortions in the glucosyl ring at the transition state. For the beta-glucosidase-catalyzed reaction, the 1-(13)C KIE of 1.032(1) demonstrated a concerted A(N)D(N) mechanism. The pattern of secondary (13)C KIEs was similar to the acid-catalyzed reaction, showing no signs of distortion. KIE measurement at natural abundance makes it possible to determine KIEs much more quickly than previously, both by increasing the speed of KIE measurement and by obviating the need for synthesis of isotopically labeled compounds.  相似文献   

7.
Nucleophile (11)C/ (14)C [ k (11)/ k (14)] and secondary alpha-deuterium [( k H/ k D) alpha] kinetic isotope effects (KIEs) were measured for the S N2 reactions between tetrabutylammonium cyanide and ethyl iodide, bromide, chloride, and tosylate in anhydrous DMSO at 20 degrees C to determine whether these isotope effects can be used to determine the structure of S N2 transition states. Interpreting the experimental KIEs in the usual fashion (i.e., that a smaller nucleophile KIE indicates the Nu-C alpha transition state bond is shorter and a smaller ( k H/ k D) alpha is found when the Nu-LG distance in the transition state is shorter) suggests that the transition state is tighter with a slightly shorter NC-C alpha bond and a much shorter C alpha-LG bond when the substrate has a poorer halogen leaving group. Theoretical calculations at the B3LYP/aug-cc-pVDZ level of theory support this conclusion. The results show that the experimental nucleophile (11)C/ (14)C KIEs can be used to determine transition-state structure in different reactions and that the usual method of interpreting these KIEs is correct. The magnitude of the experimental secondary alpha-deuterium KIE is related to the nucleophile-leaving group distance in the S N2 transition state ( R TS) for reactions with a halogen leaving group. Unfortunately, the calculated and experimental ( k H/ k D) alpha's change oppositely with leaving group ability. However, the calculated ( k H/ k D) alpha's duplicate both the trend in the KIE with leaving group ability and the magnitude of the ( k H/ k D) alpha's for the ethyl halide reactions when different scale factors are used for the high and the low energy vibrations. This suggests it is critical that different scaling factors for the low and high energy vibrations be used if one wishes to duplicate experimental ( k H/ k D) alpha's. Finally, neither the experimental nor the theoretical secondary alpha-deuterium KIEs for the ethyl tosylate reaction fit the trend found for the reactions with a halogen leaving group. This presumably is found because of the bulky (sterically hindered) leaving group in the tosylate reaction. From every prospective, the tosylate reaction is too different from the halogen reactions to be compared.  相似文献   

8.
A new transition structure for the Diels-Alder reaction between isoprene and acrolein catalyzed by Et(2)AlCl is found to reconcile reported discrepancies between computed and observed secondary kinetic isotope effects (KIEs). Including the effect of solvent realigns the computed results with experiment demonstrating the importance of nonbond interactions at transition structures. Comparison of experimental and newly predicted KIE data reaffirms the ability of theory and experiment to probe the mechanism and transition structure geometry of organic reactions.  相似文献   

9.
The reaction catalyzed by the protein phosphatase-1 (PP1) has been examined by linear free energy relationships and kinetic isotope effects. With the substrate 4-nitrophenyl phosphate (4NPP), the reaction exhibits a bell-shaped pH-rate profile for kcat/KM indicative of catalysis by both acidic and basic residues, with kinetic pKa values of 6.0 and 7.2. The enzymatic hydrolysis of a series of aryl monoester substrates yields a Br?nsted beta(lg) of -0.32, considerably less negative than that of the uncatalyzed hydrolysis of monoester dianions (-1.23). Kinetic isotope effects in the leaving group with the substrate 4NPP are (18)(V/K) bridge = 1.0170 and (15)(V/K) = 1.0010, which, compared against other enzymatic KIEs with and without general acid catalysis, are consistent with a loose transition state with partial neutralization of the leaving group. PP1 also efficiently catalyzes the hydrolysis of 4-nitrophenyl methylphosphonate (4NPMP). The enzymatic hydrolysis of a series of aryl methylphosphonate substrates yields a Br?nsted beta(lg) of -0.30, smaller than the alkaline hydrolysis (-0.69) and similar to the beta(lg) measured for monoester substrates, indicative of similar transition states. The KIEs and the beta(lg) data point to a transition state for the alkaline hydrolysis of 4NPMP that is similar to that of diesters with the same leaving group. For the enzymatic reaction of 4NPMP, the KIEs are indicative of a transition state that is somewhat looser than the alkaline hydrolysis reaction and similar to the PP1-catalyzed monoester reaction. The data cumulatively point to enzymatic transition states for aryl phosphate monoester and aryl methylphosphonate hydrolysis reactions that are much more similar to one another than the nonenzymatic hydrolysis reactions of the two substrates.  相似文献   

10.
Linear free energy relationship (LFER) and kinetic isotope effects (KIEs) are frequently used experimental means to study reaction mechanisms, in particular the nature of transition states (TSs). Density functional theory (B3LYP/6-311+G**) calculations were carried out on a model reaction, acid-catalyzed ionization of phenylethyl alcohol, to analyze how experimentally observable properties, such as nonlinearity in the Hammett and Br?nsted relations and variation in KIE, are related to a variation of the transition state structure and the mechanism. Several conclusions and insights were obtained: (1) Linear Hammett plots with a dual parameter treatment may not be evidence for an invariable TS structure for a series of reactions. (2) Variations of KIEs indeed reflect the variations of TS structures. (3) Nonlinear Br?nsted plots cannot always be taken as evidence for a stepwise mechanism. (4) A TS structure in the gas phase may change much more easily than a TS structure in solution.  相似文献   

11.
A series of isotopically labeled natural substrate analogues (phenyl 5-N-acetyl-α-d-neuraminyl-(2→3)-β-d-galactopyranosyl-(1→4)-1-thio-β-d-glucopyranoside; Neu5Acα2,3LacβSPh, and the corresponding 2→6 isomer) were prepared chemoenzymatically in order to characterize, by use of multiple kinetic isotope effect (KIE) measurements, the glycosylation transition states for Vibrio cholerae sialidase-catalyzed hydrolysis reactions. The derived KIEs for Neu5Acα2,3LacβSPh for the ring oxygen ((18)V/K), leaving group oxygen ((18)V/K), C3-S deuterium ((D)V/K(S)) and C3-R deuterium ((D)V/K(R)) are 1.029 ± 0.002, 0.983 ± 0.001, 1.034 ± 0.002, and 1.043 ± 0.002, respectively. In addition, the KIEs for Neu5Acα2,6βSPh for C3-S deuterium ((D)V/K(S)) and C3-R deuterium ((D)V/K(R)) are 1.021 ± 0.001 and 1.049 ± 0.001, respectively. The glycosylation transition state structures for both Neu5Acα2,3LacβSPh and Neu5Acα2,6LacβSPh were modeled computationally using the experimental KIE values as goodness of fit criteria. Both transition states are late with largely cleaved glycosidic bonds coupled to pyranosyl ring flattening ((4)H(5) half-chair conformation) with little or no nucleophilic involvement of the enzymatic tyrosine residue. Notably, the transition state for the catalyzed hydrolysis of Neu5Acα2,6βSPh appears to incorporate a lesser degree of general-acid catalysis, relative to the 2,3-isomer.  相似文献   

12.
Soluble methane monooxygenase (sMMO) is an enzyme that converts alkanes to alcohols using a di(μ‐oxo)diiron(IV) intermediate Q at the active site. Very large kinetic isotope effects (KIEs) indicative of significant tunneling are observed for the hydrogen transfer (H‐transfer) of CH4 and CH3CN; however, a relatively small KIE is observed for CH3NO2. The detailed mechanism of the enzymatic H‐transfer responsible for the diverse range of KIEs is not yet fully understood. In this study, variational transition‐state theory including the multidimensional tunneling approximation is used to calculate rate constants to predict KIEs based on the quantum‐mechanically generated intrinsic reaction coordinates of the H‐transfer by the di(μ‐oxo)diiron(IV) complex. The results of our study reveal that the role of the di(μ‐oxo)diiron(IV) core and the H‐transfer mechanism are dependent on the substrate. For CH4, substrate binding induces an electron transfer from the oxygen to one FeIV center, which in turn makes the μ‐O ligand more electrophilic and assists the H‐transfer by abstracting an electron from the C?H σ orbital. For CH3CN, the reduction of FeIV to FeIII occurs gradually with substrate binding and H‐transfer. The charge density and electrophilicity of the μ‐O ligand hardly change upon substrate binding; however, for CH3NO2, there seems to be no electron movement from μ‐O to FeIV during the H‐transfer. Thus, the μ‐O ligand appears to abstract a proton without an electron from the C?H σ orbital. The calculated KIEs for CH4, CH3CN, and CH3NO2 are 24.4, 49.0, and 8.27, respectively, at 293 K, in remarkably good agreement with the experimental values. This study reveals that diverse KIE values originate mainly from tunneling to the same di(μ‐oxo)diiron(IV) core for all substrates, and demonstrate that the reaction dynamics are essential for reproducing experimental results and understanding the role of the diiron core for methane oxidation in sMMO.  相似文献   

13.
It has been suggested that the magnitudes of secondary kinetic isotope effects (2 degrees KIEs) of enzyme-catalyzed reactions are an indicator of the extent of reaction-center rehybridization at the transition state. A 2 degrees KIE value close to the corresponding secondary equilibrium isotope effects (2 degrees EIE) is conventionally interpreted as indicating a late transition state that resembles the final product. The reliability of using this criterion to infer the structure of the transition state is examined by carrying out a theoretical investigation of the hybridization states of the hydride donor and acceptor in the Escherichia coli dihydrofolate reductase (ecDHFR)-catalyzed reaction for which a 2 degrees KIE close to the 2 degrees EIE was reported. Our results show that the donor carbon at the hydride transfer transition state resembles the reactant state more than the product state, whereas the acceptor carbon is more productlike, which is a symptom of transition state imbalance. The conclusion that the isotopically substituted carbon is reactant-like disagrees with the conclusion that would have been derived from the criterion of 2 degrees KIEs and 2 degrees EIEs, but the breakdown of the correlation with the equilibrium isotope effect can be explained by considering the effect of tunneling.  相似文献   

14.
A model is presented for coupled hydrogen-electron transfer reactions in condensed phase in the presence of a rate promoting vibration. Large kinetic isotope effects (KIEs) are found when the hydrogen is substituted with deuterium. While these KIEs are essentially temperature independent, reaction rates do exhibit temperature dependence. These findings agree with recent experimental data for various enzyme-catalyzed reactions, such as the amine dehydrogenases and soybean lipoxygenase. Consistent with earlier results, turning off the promoting vibration results in an increased KIE. Increasing the barrier height increases the KIE, while increasing the rate of electron transfer decreases it. These results are discussed in light of other views of vibrationally enhanced tunneling in enzymes.  相似文献   

15.
A mixed centroid path integral and free energy perturbation method (PI-FEP/UM) has been used to investigate the primary carbon and secondary hydrogen kinetic isotope effects (KIEs) in the amino acid decarboxylation of L-Dopa catalyzed by the enzyme L-Dopa decarboxylase (DDC) along with the corresponding uncatalyzed reaction in water. DDC is a pyridoxal 5'-phosphate (PLP) dependent enzyme. The cofactor undergoes an internal proton transfer between the zwitterionic protonated Schiff base configuration and the neutral hydroxyimine tautomer. It was found that the cofactor PLP makes significant contributions to lowering the decarboxylation barrier, while the enzyme active site provides further stabilization of the transition state. Interestingly, the O-protonated configuration is preferred both in the Michaelis complex and at the decarboxylation transition state. The computed kinetic isotope effects (KIE) on the carboxylate C-13 are consistent with that observed on decarboxylation reactions of other PLP-dependent enzymes, whereas the KIEs on the α carbon and secondary proton, which can easily be validated experimentally, may be used as a possible identification for the active form of the PLP tautomer in the active site of DDC.  相似文献   

16.
[reaction: see text] The transition structures and alpha-carbon 12C/13C kinetic isotope effects for 22 S(N)2 reactions between methyl chloride and a wide variety of nucleophiles have been calculated using the B1LYP/aug-cc-pVDZ level of theory. Anionic, neutral, and radical anion nucleophiles were used to give a wide range of S(N)2 transition states so the relationship between the magnitude of the alpha-carbon kinetic isotope effect and transition-state structure could be determined. The results suggest that the alpha-carbon 12C/13C kinetic isotope effects for S(N)2 reactions will be large (near the experimental maximum) and that the curve relating the magnitude of the KIE to the percent transfer of the alpha-carbon from the nucleophile to the leaving group in the transition state has a broad maximum. This means very similar KIEs will be found for early, symmetric, and late transition states and that one cannot use the magnitude of these KIEs to estimate transition-state structure.  相似文献   

17.
States along the phosphoryl transfer reaction catalyzed by the nucleoside monophosphate kinase UmpK were captured and changes in the conformational heterogeneity of conserved active site arginine side‐chains were quantified by NMR spin‐relaxation methods. In addition to apo and ligand‐bound UmpK, a transition state analog (TSA) complex was utilized to evaluate the extent to which active site conformational entropy contributes to the transition state free energy. The catalytically essential arginine side‐chain guanidino groups were found to be remarkably rigid in the TSA complex, indicating that the enzyme has evolved to restrict the conformational freedom along its reaction path over the energy landscape, which in turn allows the phosphoryl transfer to occur selectively by avoiding side reactions.  相似文献   

18.
The chlorine leaving group kinetic isotope effects (KIEs) for the S(N)2 reactions between methyl chloride and a wide range of anionic, neutral, and radical anion nucleophiles were calculated in the gas phase and, in several cases, using a continuum solvent model. In contrast to the expected linear dependence of the chlorine KIEs on the C(alpha)-Cl bond order in the transition state, the KIEs fell in a very small range (1.0056-1.0091), even though the C(alpha)-Cl transition state bond orders varied widely from approximately 0.32 to 0.78, a range from reactant-like to very product-like. This renders chlorine KIEs, and possibly other leaving-group KIEs, less useful for studies of reaction mechanisms than commonly assumed. A partial explanation for this unexpected relationship between the C(alpha)-Cl transition state bond order and the magnitude of the chlorine KIE is presented.  相似文献   

19.
Bacterial tRNA-specific adenosine deaminase (TadA) catalyzes the essential deamination of adenosine to inosine at the wobble position of tRNAs and is necessary to permit a single tRNA species to recognize multiple codons. The transition state structure of Escherichia coli TadA was characterized by kinetic isotope effects (KIEs) and quantum chemical calculations. A stem loop of E. coli tRNA(Arg2) was used as a minimized TadA substrate, and its adenylate editing site was isotopically labeled as [1'-(3)H], [5'-(3)H2], [1'-(14)C], [6-(13)C], [6-(15)N], [6-(13)C, 6-(15)N] and [1-(15)N]. The intrinsic KIEs of 1.014, 1.022, 0.994, 1.014 and 0.963 were obtained for [6-(13)C]-, [6-(15)N]-, [1-(15)N]-, [1'-(3)H]-, [5'-(3)H2]-labeled substrates, respectively. The suite of KIEs are consistent with a late SNAr transition state with a complete, pro-S-face hydroxyl attack and nearly complete N1 protonation. A significant N6-C6 dissociation at the transition state of TadA is indicated by the large [6-(15)N] KIE of 1.022 and corresponds to an N6-C6 distance of 2.0 A in the transition state structure. Another remarkable feature of the E. coli TadA transition state structure is the Glu70-mediated, partial proton transfer from the hydroxyl nucleophile to the N6 leaving group. KIEs correspond to H-O and H-N distances of 2.02 and 1.60 A, respectively. The large inverse [5'-(3)H] KIE of -3.7% and modest normal [1'-(3)H] KIE of 1.4% indicate that significant ribosyl 5'-reconfiguration and purine rotation occur on the path to the transition state. The late SNAr transition-state established here for E. coli TadA is similar to the late transition state reported for cytidine deaminase. It differs from the early SNAr transition states described recently for the adenosine deaminases from human, bovine, and Plasmodium falciparum sources. The ecTadA transition state structure reveals the detailed architecture for enzymatic catalysis. This approach should be readily transferable for transition state characterization of other RNA editing enzymes.  相似文献   

20.
The determination of kinetic isotope effects (KIEs) for different reaction pathways and steps in a complex reaction network, where KIEs may affect the overall reaction in various different ways including dominant and minority pathways or the buildup of a reaction-inhibiting adlayer, is demonstrated for formic acid electrooxidation on a Pt film electrode by quantitative electrochemical in situ IR spectroscopic measurements under controlled mass-transport conditions. The ability to separate effects resulting from different contributions--which is not possible using purely electrochemical kinetic measurements--allows conclusions on the nature of the rate-limiting steps and their transition state in the individual reaction pathways. The potential-independent values of approximately 1.9 for the KIE of formic acid dehydration (CO(ad) formation) in the indirect pathway and approximately 3 for the CO(ad) coverage-normalized KIE of formic acid oxidation to CO2 (direct pathway) indicate that 1) C-H bond breaking is rate-limiting in both reaction steps, 2) the transition states for these reactions are different, and 3) the configurations of the transition states involve rather strong bonds to the transferred D/H species, either in the initial or in the final state, for the direct pathway and--even more pronounced--for formic acid dehydration (CO(ad) formation).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号