首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   957篇
  免费   141篇
  国内免费   94篇
化学   900篇
晶体学   1篇
力学   23篇
综合类   15篇
数学   67篇
物理学   186篇
  2022年   5篇
  2021年   12篇
  2020年   19篇
  2019年   27篇
  2018年   32篇
  2017年   40篇
  2016年   64篇
  2015年   42篇
  2014年   71篇
  2013年   95篇
  2012年   78篇
  2011年   70篇
  2010年   81篇
  2009年   61篇
  2008年   88篇
  2007年   50篇
  2006年   61篇
  2005年   44篇
  2004年   45篇
  2003年   28篇
  2002年   30篇
  2001年   23篇
  2000年   25篇
  1999年   20篇
  1998年   16篇
  1997年   8篇
  1996年   10篇
  1995年   6篇
  1994年   2篇
  1993年   7篇
  1992年   6篇
  1991年   9篇
  1990年   4篇
  1989年   4篇
  1988年   5篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有1192条查询结果,搜索用时 515 毫秒
41.
The article describes synthesis and thermally triggered self‐assembly of a Poly (ethylene oxide)‐block‐poly (N‐insopropylacrylamide) (PEO‐b‐PNIPAm) in aqueous medium. At rt, the polymer remains as unimer, however, at lower critical solution temperature (LCST) of PNIPAm (32 °C), it forms a rather large undefined aggregate which at slightly elevated temperature (~40 °C) converges to well defined polymersome structure (Critical aggregation concentration = 0.45 mg/mL) with hydrodynamic diameter of 40–50 nm. By lowering the temperature, initial swelling of the compact vesicle followed by reversible disassembly to unimer was noticed. The polymersome exhibits encapsulation ability to a hydrophilic dye Calcein which can be spontaneously released by lowering the temperature below cloud point. Likewise a hydrophobic dye namely 8‐Anilino‐1‐naphthalenesulfonic acid (ANS) can also be encapsulated and released by thermal trigger. Detail photoluminescence studies reveal ANS dye can be used as a generalized probe molecule for detecting LCST of a thermoresponsive polymer by “fluorescence on” above LCST even by cursory observation. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2444–2451  相似文献   
42.
A series of well‐defined thermoresponsive graft polymers with different lengths and graft densities, poly(glycidyl methacrylate)‐graft‐poly(N‐isopropylacrylate) (PGMA‐g‐PNIPAM), were successfully prepared by combination of controlled/living free radical polymerization and click chemistry. Effects of grafting length and density on the thermoresponsive behavior, aggregating mean diameter, and self‐assembly morphology are systematically investigated. The thermosensitive characteristics of graft polymers in aqueous solution prove that the length and graft density had positive co‐relationship with the lower critical solution temperature value and mean diameter of micelles as well as the size distribution, while the effect of graft length of polymers is more significant than that of density. Transmission electron microscopy analysis shows that the conformations of PGMA45g‐PNIPAM20 and PGMA45g‐PNIPAM46 with longer length and bigger grafting density in aqueous solutions are spherical nanoparticles with the increasing trend of the diameters, while that of PGMA45g‐PNIPAM(73, 50%) shows a spherical‐like morphology, which indicates that the graft length and density have a significant effect on the mean diameter of micelle but not on the self‐assembly morphology. These results reveal that to obtain desired thermoresponsive behavior and self‐assembly morphology of functional polymers, it is essential to design and fabricate the structure of graft polymers with proper length and graft density. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2442–2453  相似文献   
43.
We demonstrate that the volume phase transition temperature (VPTT) of copolymer microgel particles made from N‐isopropylacrylamide (NIPAm) and methacryloyl hydrazide (MH) can be tailored in a reversible manner upon the reaction of the hydrazide functional groups with aldehydes. The microgels were synthesized by precipitation polymerization in water. Due to the water‐soluble nature of the MH monomer, the VPTT at which the microgel particles contract shifts to higher values by increasing the incorporated amounts of methacryloyl hydrazide from 0 to 5.0 mol %. The VPTT of the copolymer microgel dispersions in water can be fine‐tuned upon addition of hydrophobic/hydrophilic aldehydes, which react with the hydrazide moiety to produce the hydrazone analogue. This hydrazone formation is reversible, which allows for flexible, dynamic control of the thermo‐responsive behavior of the microgels. The ability to “switch” the VPTT was demonstrated by exposing hydrophilic streptomycin sulfate salt incubated microgel particles to an excess of a hydrophobic aldehyde, that is benzaldehyde. The temperature at which these microgels contracted in size upon heating was markedly lowered in these aldehyde exchange experiments. Transformation into benzaldehyde hydrazone derivatives led to assembly of the microgel particles into small colloidal clusters at elevated temperatures. This control of supracolloidal cluster formation was also demonstrated with polystyrene particles which had a hydrazide functionalised microgel shell. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1745–1754  相似文献   
44.
New relationship of displacement signal using opposite sectors on a quadrant photodiode is derived. Standard and new displacement signals are analyzed in details. Through MATLAB® laser tracking simulation models, based on common and suggested approaches, detailed analysis is performed, and it is shown that better results for the new relationship signal processing are obtained. Within new relationship of displacement signal, the sensitivity of the system to the displacement of the spot increases and, hence, provides better accuracy in positioning up to 30%.  相似文献   
45.
We report on the preparation of reduction‐responsive amphiphilic block copolymers containing pendent p‐nitrobenzyl carbamate (pNBC)‐caged primary amine moieties by reversible addition–fragmentation chain transfer (RAFT) radical polymerization using a poly(ethylene glycol)‐based macro‐RAFT agent. The block copolymers self‐assembled to form micelles or vesicles in water, depending on the length of hydrophobic block. Triggered by a chemical reductant, sodium dithionite, the pNBC moieties decomposed through a cascade 1,6‐elimination and decarboxylation reactions to liberate primary amine groups of the linkages, resulting in the disruption of the assemblies. The reduction sensitivity of assemblies was affected by the length of hydrophobic block and the structure of amino acid‐derived linkers. Using hydrophobic dye Nile red (NR) as a model drug, the polymeric assemblies were used as nanocarriers to evaluate the potential for drug delivery. The NR‐loaded nanoparticles demonstrated a reduction‐triggered release profile. Moreover, the liberation of amine groups converted the reduction‐responsive polymer into a pH‐sensitive polymer with which an accelerated release of NR was observed by simultaneous application of reduction and pH triggers. It is expected that these reduction‐responsive block copolymers can offer a new platform for intracellular drug delivery. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1333–1343  相似文献   
46.
Low ceiling temperature, thermodynamically unstable polymers have been troublesome to synthesize and keep stable during storage. In this study, stable poly(phthalaldehyde) has been synthesized with BF3‐OEt2 catalyst. The role of BF3 in the polymerization is described. The interaction of BF3 with the monomer is described and used to maximize the yield and molecular weight of poly(phthalaldehyde). Various Lewis acids were used to investigate the effect of catalyst acidity on poly(phthalaldehyde) chain growth. In situ nuclear magnetic resonance was used to identify possible interactions formed between BF3 and phthalaldehyde monomer and polymer. The molecular weight of the polymer tracks with polymerization yield. The ambient temperature stability of poly(phthalaldehyde) was investigated and the storage life of the polymer has been improved. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 55, 1166–1172  相似文献   
47.
In this article, we reveal the temperature memory effect (TME) in a commercial thermoplastic polymer, namely ethylene‐vinyl acetate (EVA), within its glass transition range via a series of differential scanning calorimeter (DSC) tests. In addition, we investigate the influence of heating holding time and also compare the observed TME in current study with that of shape memory alloys (SMAs). It is concluded that the TME via DSC (without any macroscopic shape change) is achievable within the glass transition range of a polymer. Conversely, although the observed TME shares the many similar features as those in SMAs, due to the nature of micro‐Brownian motion in the glass transition of polymers, the resulted TME is strongly affected by the heating holding time. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1731–1737  相似文献   
48.
The binding and release capabilities of a hydrogel series, constructed of hydrophilic poly(ethylene glycol) segments and hydrophobic dendritic junctions [poly (benzyl ether)s], are evaluated in aqueous media. The environmental response of the amphiphilic networks is also tested in water at three pH values: 1.5, 7.0, and 10.1. The highest swelling ratio is observed under acidic conditions and varies between 3.7 and 6.5, depending on the crosslinking density and dendrimer generation. Gel specimens with embedded indicators react within 3–6 s with a clear color switch to the change in the pH of the surrounding medium. The experiments with model anionic and cationic indicators and stains show that the hydrogels have basic interiors. The gel binding capabilities depend on the water solubility of the substrate and on the size of the incorporated dendritic fragments. Model release studies have been performed at 37 °C and pHs 1.5, 7.0, and 10.1. The observed phenomena are explained by the transformations in the structure and charge that both the networks and the model compounds undergo with the changes in the pH of the aqueous medium. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4017–4029, 2005  相似文献   
49.
Cost-sensitive classification is based on a set of weights defining the expected cost of misclassifying an object. In this paper, a Genetic Fuzzy Classifier, which is able to extract fuzzy rules from interval or fuzzy valued data, is extended to this type of classification. This extension consists in enclosing the estimation of the expected misclassification risk of a classifier, when assessed on low quality data, in an interval or a fuzzy number. A cooperative-competitive genetic algorithm searches for the knowledge base whose fitness is primal with respect to a precedence relation between the values of this interval or fuzzy valued risk. In addition to this, the numerical estimation of this risk depends on the entrywise product of cost and confusion matrices. These have been, in turn, generalized to vague data. The flexible assignment of values to the cost function is also tackled, owing to the fact that the use of linguistic terms in the definition of the misclassification cost is allowed.  相似文献   
50.
The free-radical redox-initiated aqueous solution polymerization of fully and partially neutralized acrylic acid was carried out at room temperature under full exposure to air. The effect of neutralization degree on the polymerization rate and product properties was studied. Increasing neutralization of the reaction mixture with sodium hydroxide resulted in greater conversion of acrylic acid to sodium acrylate. The rate of polymerization, determined from a gravimetric off-line water removal technique, was shown to decrease significantly with decreasing degree of neutralization. Molecular weight also decreased with decreasing degree of neutralization. The glass transition temperature and hydrophilicity of the polymer product decreased with increasing degree of neutralization. In-line infrared monitoring was also used to monitor the reaction progress and was shown to be an effective tool for this purpose.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号