首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   294篇
  免费   10篇
  国内免费   50篇
化学   172篇
晶体学   6篇
力学   6篇
数学   1篇
物理学   169篇
  2024年   2篇
  2023年   9篇
  2022年   6篇
  2021年   8篇
  2020年   11篇
  2019年   4篇
  2018年   9篇
  2017年   5篇
  2016年   11篇
  2015年   7篇
  2014年   12篇
  2013年   13篇
  2012年   30篇
  2011年   36篇
  2010年   34篇
  2009年   52篇
  2008年   25篇
  2007年   21篇
  2006年   20篇
  2005年   16篇
  2004年   10篇
  2003年   4篇
  2002年   3篇
  2001年   3篇
  1999年   1篇
  1996年   1篇
  1994年   1篇
排序方式: 共有354条查询结果,搜索用时 15 毫秒
31.
β phase polyoctylfluorene thin films were obtained by exposure to toluene vapor for various annealing times or dipping into a THF/methanol mixture. The photoluminescence and electroluminescence of PFO thin films decrease with increasing annealing time. Grazing incident X-ray diffraction of the thin films indicates that more and larger β phase crystallites will be generated in thin film exposed for longer time, which will lead to more defects that reduce photoluminescence and electroluminescence. By analyzing the mechanism of formation of β phase, we assume that the defects mainly come from the formation of out-of-plane crystalline structure. The assumption is confirmed by higher photoluminescence of β phase polyoctylfluorene thin film achieved by dipping into a THF/methanol mixture that has less out-of-plane crystalline structure.  相似文献   
32.
Nanocrystalline samples of Pb1−yLay(Ti1−xMnx)(1−y/4)O3 (PLMT) (y=0.06, x=0, 0.04, 0.07 and 0.10) were prepared by mechanical activation process (i.e., ball milling) followed by some annealing. The formation of single phase tetragonal crystal structure is confirmed by high-resolution X-ray diffraction study and by High resolution transmission electron micrographs (HRTEM), nano-scale compounds. The electrical behavior (i.e., impedance (Z) and electrical modulus (M)) of PLMT ceramics was studied by impedance spectroscopy technique in high temperature range. This study was carried out by means of the simultaneous analysis of the complex impedance (Z?) and electrical modulus (M*) functions in a wide frequency range (1 kHz-1 MHz). Impedance analysis has shown the grain and grain boundary contributions by an equivalent circuit model. Modulus analysis has provided vast information on charge transport processes. The simultaneous representation of the imaginary part of impedance and electric modulus (Z″, M″) vs. frequency revealed the localization of relaxation. The activation energy obtained from relaxation data may be attributed to oxygen ion vacancies.  相似文献   
33.
The optical properties of the asymmetric double semi-parabolic quantum wells (DSPQWs) are investigated numerically for typical GaAs/AlxGa1−xAs. Optical properties are obtained using the compact density matrix approach. In this work, effects of the structure parameters such as the barrier width and the well widths on the optical properties of the asymmetric DSPQWs are investigated. The results show that the linear and nonlinear optical properties of asymmetric DSPQW are non-monotonic functions of these structure parameters. The behavior of the refractive index changes of asymmetric DSPQW with the variation of the barrier width is different substantially with that of symmetric DSPQW. Results reveal that the resonant peak values of the total absorption coefficient of asymmetric DSPQW is usually greater than that of symmetric DSPQW. Our calculations also show that the total absorption coefficient of asymmetric DSPQW is larger than that of asymmetric double square quantum well.  相似文献   
34.
The structural and optical properties of the novel porous iron oxide fabricated by wood template have been investigated. The obtained porous iron oxide was characterized to be α- Fe2O3 by Fourier transform infrared and Raman spectroscopy. X-ray absorption fine structure measurement revealed that the bond length of Fe-O1 of the porous iron oxide has good agreement with that reported for the α- Fe2O3 crystal structure while the bond lengths for Fe-O2 and Fe-Fe deviate slightly from those of the α- Fe2O3 crystal structure. Photoluminescence from the porous iron oxide exhibited broad emission bands around 760 and 890 nm, which are believed to be due to the unique nanoscale structure of the porous iron oxide.  相似文献   
35.
In this article we report the seed-assisted growth of epitaxial ZnO nanorod (NR) arrays on (0 0 0 1) plane sapphire substrates at low temperatures in aqueous solutions. The self-organized periodic ZnO NR rows with a fairly constant separation were directly grown on bare sapphire surfaces, without the need for any complicated lithography or use of pre-patterned catalysts. The spatial ordering of the ZnO NRs was significantly influenced by the seed growth conditions and by the presence of a self-organized step structure on the annealed sapphire surface. In addition, the effect of the conditions employed to prepare the seeds, including growth parameters and post-growth annealing treatment, on the epitaxial relationship between the ZnO NRs and the sapphire substrate was systematically investigated by X-ray diffraction (XRD) measurements and transmission electron microscopy (TEM) observations. Post-growth annealing of the ZnO seeds changed the morphologies and crystallographic alignment of the generated ZnO nanostructures significantly, as a result of the formation of epitaxial spinel ZnAl2O4 interlayers, facilitated by zinc cation diffusion and solid state reactions at high temperature.  相似文献   
36.
The rheological behavior and morphology of carbon nanofiber/polystyrene (CNF/PS) composites in their melt phase have been characterized both through experimental measurements and modeling. Composites prepared in the two different processes of solvent casting and melt blending are contrasted; melt-blended and solvent-cast composites were each prepared with CNF loadings of 2, 5, and 10 wt%. A morphological study revealed that the melt blending process results in composites with shorter CNFs than in the solvent-cast composites, due to damage caused by the higher stresses the CNFs encounter in melt blending, and that both processes retain the diameter of the as-received CNFs. The addition of carbon nanofiber to the polystyrene through either melt blending or solvent casting increases the linear viscoelastic moduli, G′ and G″, and steady-state viscosity, η, in the melt phase monotonically with CNF concentration, more so in solvent cast composites with their longer CNFs. The melt phase of solvent-cast composites with higher CNF concentrations exhibit a plateau of the elastic modulus, G′, at low frequencies, an apparent yield stress, and large first normal stress difference, N 1, at low strain rates, which can be attributed to contact-based network nanostructure formed by the long CNFs. A nanostructurally-based model for CNF/PS composites in their melt phase is presented which considers the composite system as rigid rods in a viscoelastic fluid matrix. Except for two coupling parameters, all material constants in the model for the composite systems are deduced from morphological and shear flow measurements of its separate nanofiber and polymer melt constituents of the composite. These two coupling parameters are polymer–fiber interaction parameter, σ, and interfiber interaction parameter, C I. Through comparison with our experimental measurements of the composite systems, we deduce that σ is effectively 1 (corresponding to no polymer–fiber interaction) for all CNF/PS nanocomposites studied. The dependence of CNF orientation on strain rate which we observe in our experiments is captured in the model by considering the interfiber interaction parameter, C I, as a function of strain rate. Applied to shear flows, the model predicts the melt-phase, steady-state viscosities, and normal stress differences of the CNF/PS composites as functions of shear rate, polymer matrix properties, fiber length, and mass concentration consistent with our experimental measurements.  相似文献   
37.
Nanostructure formation by single slow highly charged ion impacts can be associated with high density of electronic excitations at the impact points of the ions. Experimental results show that depending on the target material these electronic excitations may lead to very large desorption yields in the order of a few 1000 atoms per ion or the formation of nanohillocks at the impact site. Even in ultra-thin insulating membranes the formation of nanometer sized pores is observed after ion impact. In this paper, we show recent results on nanostructure formation by highly charged ions and compare them to structures and defects observed after intense electron and light ion irradiation of ionic crystals and graphene. Additional data on energy loss, charge exchange and secondary electron emission of highly charged ions clearly show that the ion charge dominates the defect formation at the surface.  相似文献   
38.
采用柠檬酸钠还原氯金酸的方法,制备出粒径均一的金纳米粒子(AuNPs),通过加入二水合双(对-磺酰苯基)苯基膦化二钾盐(BSPP),增强了AuNPs体系的分散性与稳定性.选用直径为15和40nm的AuNPs,用不同序列巯基修饰的单链DNA连接到其表面,通过DNA链的杂交,形成不同结构的金纳米粒子组装体.通过改变加入DNA延长连接单元的比例,可以控制金纳米粒子组装体具有连续离散型的1∶1,2∶1和3∶1纳米结构.  相似文献   
39.
Electrochemical reduction of CO2 provides a sustainable solution to address the intermittent renewable electricity storage while recycling CO2 to produce fuels and chemicals. Highly efficient catalytic materials and reaction systems are required to drive this process economically. This Review highlights the new trends in advancing the electrochemical reduction of CO2 by developing and designing nanostructured heterogeneous catalysts. The activity, selectivity and reaction mechanism are significantly affected by the nano effects in nanostructured heterogeneous catalysts. In the future, energy efficiency and current density in electrochemical reduction of CO2 need to be further improved to meet the requirements for practical applications.  相似文献   
40.
Within the effective mass approximation and variational method the effect of dielectric constant mismatch between the size-quantized semiconductor sphere, coating and surrounding environment on impurity binding energy in both the absence and presence of a magnetic field is considered. The dependences of the binding energy of a hydrogenic on-center impurity on the sphere and coating radii, alloy concentration, dielectric-constant mismatch, and magnetic field intensity are found for the GaAs–Ga1−xAlxAs–AlAs (or vacuum) system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号