首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   268篇
  免费   47篇
  国内免费   46篇
化学   281篇
力学   3篇
综合类   1篇
数学   7篇
物理学   69篇
  2023年   8篇
  2022年   8篇
  2021年   34篇
  2020年   24篇
  2019年   20篇
  2018年   18篇
  2017年   12篇
  2016年   25篇
  2015年   19篇
  2014年   21篇
  2013年   32篇
  2012年   26篇
  2011年   16篇
  2010年   9篇
  2009年   8篇
  2008年   15篇
  2007年   15篇
  2006年   7篇
  2005年   12篇
  2004年   5篇
  2003年   3篇
  2002年   6篇
  2001年   2篇
  1999年   1篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有361条查询结果,搜索用时 750 毫秒
51.
A dendritic bisphosphonate carrying three bisphosphonate (BP) units in close proximity was designed as a ligand to conjugate large therapeutic molecules for their bone selective delivery. The Bu3P-catalyzed conjugate addition of nitromethane to vinylidene bisphosphonate was effective to construct a quaternary carbon center carrying BP units. Owing to multivalent interactions, the dendritic bisphosphonate showed considerable affinity for the bone mineral hydroxyapatite even in the presence of a competitor, demonstrating potential as a bone targeting ligand.  相似文献   
52.
Mitochondrial membrane potential is more negative in cancer cells than in normal cells, allowing cancer targeting by delocalized lipophilic cations (DLCs). However, as the difference is rather small, these drugs affect also normal cells. Now a concept of pro‐DLCs is proposed based on an N‐alkylaminoferrocene structure. These prodrugs are activated by the reaction with reactive oxygen species (ROS) forming ferrocenium‐based DLCs. Since ROS are overproduced in cancer, the high‐efficiency cancer‐cell‐specific targeting of mitochondria could be achieved as demonstrated by fluorescence microscopy in combination with two fluorogenic pro‐DLCs in vitro and in vivo. We prepared a conjugate of another pro‐DLC with a clinically approved drug carboplatin and confirmed that its accumulation in mitochondria was higher than that of the free drug. This was reflected in the substantially higher anticancer effect of the conjugate.  相似文献   
53.
The cytochrome P450 (P450) enzymes are mainly localized to the endoplasmic reticulum (ER), where they function within catalytic complexes metabolizing xenobiotics and some endogenous substrates. However, certain members of families 1–3 were also found in other subcellular compartments, such as mitochondria, plasma membrane, and lysosomes. The physiological function of these enzymes in non-ER locations is not known, although plasma-membrane-associated P450s have been described to be catalytically active and to participate in immune-mediated reactions with autoantibody formation that can trigger drug-induced hepatitis. Several retention/retrieval mechanisms are active in the ER retention of the P450s and inverse integration of the translated P450 into the ER membrane appears to be responsible for transport to the plasma membrane. Furthermore, hydrophilic motifs in the NH2-terminal part have been suggested to be important for mitochondrial import. Phosphorylation of P450s has been described to be important for increased rate of degradation as well as for targeting into mitochondria. It was also suggested that the mitochondria-targeted P450s from families 1–3 could be active in drug metabolism using an alternative electron transport chain. In this review we present an update of the field emphasizing studies concerning localization, posttranslational modification, such as phosphorylation, and intracellular transport of microsomal P450s.  相似文献   
54.
本文采用活性亚结构拼接原理,设计并合成了15个新型含哌啶的查尔酮类衍生物,利用1H NMR、13C NMR和HR-MS对结构进行表征,并初步评价了其抗宫颈癌和抗顺铂耐药宫颈癌活性作用。结果表明,化合物6g具有一定的抗肿瘤活性和逆转顺铂耐药作用;并采用Elisa法、联合顺铂用药、Western Blot和分子对接对化合物6g与VEGFR-2和P-gp靶点进行了初步的研究。本研究为基于VEGFR-2和P-gp双靶点新型分子靶向查尔酮类衍生物的设计提供了一条思路。  相似文献   
55.
以D-半乳糖和二缩三乙二醇为原料,经乙酰化、糖基化和叠氮化钠取代等反应合成了带叠氮连接臂的半乳糖配基,通过点击化学反应将其与炔丙基修饰的马蹄金素(MTS)衍生物进行连接,设计合成了6个具有潜在肝靶向性的半乳糖糖基化MTS衍生物.通过1H NMR,13C NMR,1H-1H COSY,HMQC,DEPT和ESI-MS对其结构进行了表征;采用Hep G2 2.2.15细胞模型初步评价了目标化合物的抗乙型肝炎病毒(HBV)活性.结果表明,所有目标化合物对HBV DNA的复制均有抑制作用,且具有一定的量效关系;化合物15f在50μg/m L浓度下对Hep G2 2.2.15细胞株的抑制率为83%,具有进一步研究的价值.  相似文献   
56.
p53 is a tumor‐suppressor protein related to the cell cycle and programmed cell apoptosis. Herein, dual‐targeting nanovesicles are designed for in situ imaging of intracellular wild‐type p53 (WTp53) and mutant p53 (MUp53). Nanovesicle‐encapsulated plasmonic gold nanoparticles (AuNPs) were functionalized with consensus DNA duplexes, and a fluorescein isothiocyanate (FITC)‐marked anti‐MUp53 antibody was conjugated to the nanovesicle surface. After entering the cytoplasm, the released AuNPs aggregated through recognition of WTp53 and the double‐stranded DNA. The color changes of AuNPs were observed using dark‐field microscopy, which showed the intracellular WTp53 distribution. The MUp53 location was detected though the immunological recognition between FITC‐labeled anti‐MUp53 and MUp53. Thus, a one‐step incubation method for the in situ imaging of intracellular WTp53 and MUp53 was obtained; this was used to monitor the p53 level under a drug treatment.  相似文献   
57.
Dual inhibition of A2A and MAO-B is an emerging strategy in neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). In this study, atom-based three-dimensional quantitative structure–activity relationship (3D-QSAR) and hologram quantitative structure–activity relationship (HQSAR) models were generated with benzothiazine and deazaxanthine derivatives. Based on activity against A2A and MAO-B, two statistically signi?cant 3D-QSAR models (r2 = 0.96, q2 = 0.76 and r2 = 0.91, q2 = 0.63) and HQSAR models (r2 = 0.93, q2 = 0.68 and r2 = 0.97, q2 = 0.58) were developed. In an activity cliff analysis, structural outliers were identified by calculating the Mahalanobis distance for a pair of compounds with A2A and MAO-B inhibitory activities. The generated 3D-QSAR and HQSAR models, activity cliff analysis, molecular docking and dynamic studies for dual target protein inhibitors provide key structural scaffolds that serve as building blocks in designing drug-like molecules for neurodegenerative diseases.  相似文献   
58.
Metalloproteases involved in extracellular matrix remodeling play a pivotal role in cell response by regulating the bioavailability of cytokines and growth factors. Recently, the disintegrin and metalloprotease, ADAMTS1 has been demonstrated to be able to activate the transforming growth factor TGF-β, a major factor in fibrosis and cancer. The KTFR sequence from ADAMTS1 is responsible for the interaction with the LSKL peptide from the latent form of TGF-β, leading to its activation. While the atomic details of the interaction site can be the basis of the rational design of efficient inhibitory molecules, the binding mode of interaction is totally unknown.In this study, we show that recombinant fragments of human ADAMTS1 containing KTFR sequence keep the ability to bind the latent form of TGF-β. The recombinant fragment with the best affinity is modeled to investigate the binding mode of LSKL peptide with ADAMTS1 at the atomic level. Using a combined approach with molecular docking and multiple independent molecular dynamics (MD) simulations, we provide the binding mode of LSKL peptide with ADAMTS1. The MD simulations starting with the two lowest energy model predicted by molecular docking shows stable interactions characterized by 3 salt bridges (K3–NH3+ with E626–COO; L4–COO with K619–NH3+; L1–NH3+ with E624–COO) and 2 hydrogen bonds (S2–OH with E623–COO; L4–NH with E623–COO). The knowledge of this interaction mechanism paves the way to the design of more potent and more specific inhibitors against the inappropriate activation of TGF-β by ADAMTS1 in liver diseases.  相似文献   
59.
Photothermal therapy (PTT) is an emerging noninvasive and precise localized therapeutic modality; however, it is deeply limited by its poor tumor accumulation, inadequate photothermal conversion efficiency, and the thermoresistance of cancer cells. Aimed at these shortcomings, tumor‐targeting nanoparticles (iRGD‐W18O49‐17AAG) comprising carboxyl‐group‐functionalized W18O49 nanoparticles, integrin‐targeting peptide iRGD, and HSP90‐inhibitor 17AAG are developed. The W18O49 nanoparticles act as excellent PTT carriers and computed tomography (CT) imaging contrast agents. The ring type polypeptide iRGD promotes the accumulation of nanoparticles in the tumour and further penetration into cancer cells. The introduction of 17AAG can inhibit the heat‐shock response and overcome the thermoresistance, thus increasing the curative effect of PTT and reducing the chance of tumor recurrence. The W18O49 nanoparticles can also be used to monitor and guide the phototherapeutic through CT and near‐infrared fluorescence imaging after modification with Cy5.5. In addition, superior biosafety is also indicated in both preliminary in vitro and in vivo assessments. The potential of iRGD‐W18O49‐17AAG in tumor targeting, dual modality imaging‐guided and remarkable enhanced PTT of gastric cancer with ignorable side effect both in vitro and in vivo, which may be further applied in clinic, is highlighted.  相似文献   
60.
In this paper, we synthesized a series of proteolysis targeting chimeras(PROTACs) using VHL E3 ligase ligands for BRD4 protein degradation. One of the most promising compound 19g exhibited robust potency of BRD4 inhibition with IC50 value of (18.6±1.3) nmol/L, respectively. Furthermore, compound 19g potently inhibited cell proliferation in BRD4-sensitive cell lines RS4;11 with IC50 value of (34.2±4.3) nmol/L and capable of inducing degradation of BRD4 protein at 0.4—0.6 µmol/L in the RS4;11 leukemia cells. These data show that compound 19g is a highly potent and efficacious BRD4 degrader.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号