首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10706篇
  免费   1993篇
  国内免费   2591篇
化学   12139篇
晶体学   155篇
力学   320篇
综合类   62篇
数学   195篇
物理学   2419篇
  2024年   39篇
  2023年   189篇
  2022年   393篇
  2021年   509篇
  2020年   729篇
  2019年   535篇
  2018年   482篇
  2017年   543篇
  2016年   686篇
  2015年   647篇
  2014年   728篇
  2013年   1246篇
  2012年   857篇
  2011年   860篇
  2010年   699篇
  2009年   717篇
  2008年   714篇
  2007年   680篇
  2006年   588篇
  2005年   546篇
  2004年   538篇
  2003年   434篇
  2002年   326篇
  2001年   272篇
  2000年   214篇
  1999年   193篇
  1998年   174篇
  1997年   133篇
  1996年   109篇
  1995年   117篇
  1994年   85篇
  1993年   88篇
  1992年   38篇
  1991年   36篇
  1990年   28篇
  1989年   15篇
  1988年   17篇
  1987年   14篇
  1986年   10篇
  1985年   10篇
  1984年   11篇
  1983年   9篇
  1982年   7篇
  1981年   7篇
  1980年   5篇
  1979年   7篇
  1977年   1篇
  1976年   2篇
  1972年   1篇
  1971年   1篇
排序方式: 共有10000条查询结果,搜索用时 109 毫秒
991.
The simultaneous promotion in mechanical and electrical properties of rigid polyurethane (RPU) is an important task for expanding potential application. In this work, carbon fibers (CFs) reinforced RPU composites were prepared with the goal of improving mechanical and electrical properties. Metallized CFs meet our performance requirements and can be easily achieved via electrodeposition. However, the weak bonding strength in fiber‐metal‐RPU interface restricts their application. Inspired by the reducibility and wonderful adhesion of dopamine (DA), we proposed a new and efficient electrochemical method to fabricate metallized CFs, where DA polymerization was simultaneously integrated coupled with the reduction of metal ions (Ni2+). The characterization results helped us to gain insight about the reaction mechanism, which was never reported as far as we know. Compared with pure RPU, the tensile, interlaminar shear and impact strength of polydopamine (PDA)‐nickel (Ni) modified CFs/RPU composites were improved by 11.2%, 21.0%, and 78.0%, respectively, which attributed to the strong interfacial adhesion, including mechanical interlocking and chemical crosslinking between treated CFs and RPU. In addition, the PDA‐Ni surface treatment method also affected the dispersion of short CFs in the RPU, which increased the possibility of conductor contact and reduced insulator between fibers networks, resulting in higher electrical conductivity.  相似文献   
992.
In this work 12 different ionic liquids (ILs) have been used added as co‐binders in the preparation of modified carbon paste electrodes (IL–CPEs) used for the voltammetric analysis of dopamine in Britton‐Robinson buffer. The ionic liquids studied were selected based on three main criteria: (1) increasing chain length of alkyl substituents (studying 1‐ethylimidazolium and ethyl, propyl, butyl, hexyl and decylmethylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids); (2) nature of the counter ion (dicyanamide, bis(trifluoromethylsulfonyl)imide and hexafluorophosphate) in 1‐butyl‐3‐methylimidazolium ionic liquids; and (3) cation ring structures (1‐butyl‐3‐methylimidazolium, 1‐butyl‐1‐methylpiperidinium, 1‐butyl‐1‐methylpyrrolidinium and 1‐butyl‐3‐methylpyridinium) in bis(trifluoromethylsulfonyl)imide or hexafluorophosphate (1‐butyl‐3‐methylimidazolium or 1‐butyl‐3‐methylpyridinium as cations) ionic liquids. The use of IL as co‐binders in IL–CPE results in a general enhancement of both the sensitivity and the reversibility of dopamine oxidation. In square wave voltammetry experiments, the peak current increased up to a 400 % when 1‐ethyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide was used as co‐binder, as compared to the response found with the unmodified CPE. Experimental data provide evidence that electrostatic and steric effects are the most important ones vis‐à‐vis these electrocatalytic effects on the anodic oxidation of dopamine on IL–CPE. The relative hydrophilicity of dicyanamide anions reduced the electrocatalytic effects of the corresponding ionic liquids, while the use of 1‐ethyl‐3‐methylimidazolium hexafluorophosphate or 1‐ethyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide (two relatively small and highly hydrophobic ionic liquids) as co‐binders in IL–CPE resulted in the highest electrocatalytic activity among all of the IL–CPE studied.  相似文献   
993.
A biosensor was prepared with natural melanin nanoparticles (MNP) decorated on a screen‐printed carbon electrode (SPCE). Hexavalent chromium was selected as a well‐known heavy metal ion to be detected for testing the performance of novel biosensor. Natural MNP was extracted from cuttlefish (Sepia officinalis) ink. Surface decoration of SPCEs with MNP was performed by two different methods. The first one was layer‐by‐layer assembly (LBL‐A) for different cycle times(n). In the second one, plasma treatment of SPCE incorporated with evaporation‐induced self‐assembly (EI‐SA) techniques including different incubation times in MNP solutions. The performance of both modified SPCEs were tested for amperometric detection of Cr(VI) in various water samples, and peak reduction of Cr(VI) was determined at 0.33 V. Amperometric results showed wide linear ranges of 0.1–2 μM and 0.1–5 μM of Cr(VI) for SPCEs modified with 14n‐LBL‐A and 12h‐EI‐SA, respectively. The sensitivities of SPCEs modified with 14n‐LBL‐A and 12h‐EI‐SA techniques were 0.27 μA μM?1 and 0.52 μA μM?1, respectively. In addition, both modified SPCEs selectively detected Cr(VI) in a model aqueous system composed of certain other heavy metals and minerals, and tap and lake water samples. The LOD and LOQ values for 12h‐EI‐SA were 0.03 μM and 0.1 μM, respectively. This showed that MNP‐modified‐SPCEs generated via EI‐SA techniques have the potential to be an alternative to conventional detection methods such as ICP‐MS.  相似文献   
994.
In the present research, a multifunctional hierarchical reinforcement was prepared by chemical modification of carbon fibers (CFs) with halloysite nanotubes (HNTs) by the bridging diethylenetriaminepentaacetic acid (DTPA) for improving interfacial microstructures and properties of composites. Surface structures and groups of modified HNTs and CFs were characterized systematically. The uniform distributions of the introduced DTPA and HNTs helped to increase fiber polarity, surface energy, and wettability. As a consequence, significant enhancements of interfacial properties and hydrothermal aging resistance of composites were achieved, and interfacial reinforcing mechanisms have also been studied. Moreover, the storage modulus showed a 17.95% improvement, and the glass transition temperature was enhanced by 17°C by dynamic mechanical analysis testing.  相似文献   
995.
This study aimed to produce nanoparticles of poly (acrylonitrile‐co‐itaconic acid) (P (AN‐co‐IA)) containing conjugated polymers of pyrrole, N‐Methylpyrrole, 2,5‐dimethylpyrrole, and 1‐(Triisopropylsilyl)pyrrole which were synthesized by emulsion polymerization. Nanocomposite structures of P (AN‐co‐IA)/polypyrrole and polymer of pyrrole derivatives were produced via in situ polymerization, and the nanoparticle formation were followed by morphologic and ultraviolet‐visible (UV‐Vis) spectroscopic methods. Characterizations were made by Fourier transform infrared‐attenuated total reflectance (FTIR‐ATR) and Raman spectroscopy. Atomic force microscopy (AFM) was used for investigating the surface characteristics of the nanoparticles. Characterization results revealed that nanoparticles containing conjugated polymers had rougher surface than P (AN‐co‐IA) nanoparticles. It was also observed that the nanoparticles were well‐distributed although having some agglomerates. Moreover, depending on the type of monomer of conjugated polymer, the shape and size of the produced nanoparticles differed by conjunction with their polymerization rate. These findings can be used as a startup information for production of carbon nanofibers (CNFs) with desired properties after oxidation and carbonization, and as a high‐performance and cost‐effective flame and heat‐resistant material (oxidized copolymers of polyacrylonitrile nanofiber).  相似文献   
996.
A new disposable sensitive voltammetric sensor for the determination of Fe(III) based on a graphene (G) and piroxicam (Pir) modified screen printed carbon electrode (Pir/G/SPCE) has been developed. The developed method is based on accumulation of Fe(III) on the surface of the prepared sensor strip, formation a complex with Pir and subsequent reduction the adsorbed chelated Fe(III) at ?0.03 V (vs. Ag/AgCl) coupled with the catalytic enhancement of bromate. Characterizations of the modified electrode surface were performed by field emission scanning electron microscopy (FE‐SEM), energy dispersive X‐ray spectroscopy (EDX) and electrochemical impedance spectroscopy (EIS). Electrochemical behavior of the modified SPCEs was investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Under the optimum conditions, the catalytic voltammetric method exhibited linear calibration plot in the concentration ranges of 1–100 ng mL?1 and 100–3500 ng mL?1 Fe(III) with a limit of detection of 0.3 ng mL?1. The sensor strip displayed good reproducibility with 1.7 % relative standard deviation (RSD%). The developed method was successfully applied for the determination of iron in food samples such as vegetables, fruit, and cereal.  相似文献   
997.
P-nitrophenol (PNP), a hazardous phenolic material, should be eliminated from water in order to prevent damage to the marine ecosystem, animals as well as humans. Although adsorption seems to become the most widely used strategy, an effective and strong-capacity adsorbent to minimize PNP under the approved concentration is essential to discovering. In this study, a class of porous adsorbents composite was developed for the PNP removal from water. AC-NH2-MIL-101(Cr) has chosen to boost the removal of PNP from water owing to extremely porous and stable in water. The fabricated composite has 2049 m2.g−1 large surface area and 0.93 cm3.g−1 pore volume. The adsorption kinetics and isotherms were investigated. AC-NH2-MIL-101(Cr) was found to exhibit an adsorption capacity of ~ 18.3 mg g−1. The mechanism for this strong adsorption performance was suggested and related to affinity NO2 groups of PNP and the unsaturated chromium site of AC-NH2-MIL-101(Cr), the coulombic interaction via the hydrogen bond between the PNP and AC-NH2-MIL-101(Cr) and π-π stacking interaction. AC-NH2-MIL-101(Cr) composite also displayed exceptional stability and reusability after a successive PNP removal processes. This study provides new insight into developing and synthesizing extremely effective nanoporous material for organic contaminants disinfection from waste water based on MOFs.  相似文献   
998.
Metal–CO2 batteries have attracted much attention owing to their high energy density and use of greenhouse CO2 waste as the energy source. However, the increasing cost of lithium and the low discharge potential of Na–CO2 batteries create obstacles for practical applications of Li/Na–CO2 batteries. Recently, earth‐abundant potassium ions have attracted considerable interest as fast ionic charge carriers for electrochemical energy storage. Herein, we report the first K–CO2 battery with a carbon‐based metal‐free electrocatalyst. The battery shows a higher theoretical discharge potential (E?=2.48 V) than that of Na–CO2 batteries (E?=2.35 V) and can operate for more than 250 cycles (1500 h) with a cutoff capacity of 300 mA h g?1. Combined DFT calculations and experimental observations revealed a reaction mechanism involving the reversible formation and decomposition of P121/c1‐type K2CO3 at the efficient carbon‐based catalyst.  相似文献   
999.
Photoactivation in CdSe/ZnS quantum dots (QDs) on UV/Vis light exposure improves photoluminescence (PL) and photostability. However, it was not observed in fluorescent carbon quantum dots (CDs). Now, photoactivated fluorescence enhancement in fluorine and nitrogen co‐doped carbon dots (F,N‐doped CDs) is presented. At 1.0 atm, the fluorescence intensity of F,N‐doped CDs increases with UV light irradiation (5 s–30 min), accompanied with a blue‐shift of the fluorescence emission from 586 nm to 550 nm. F,N‐doped CDs exhibit photoactivated fluorescence enhancement when exposed to UV under high pressure (0.1 GPa). F,N‐doped CDs show reversible piezochromic behavior while applying increasing pressure (1.0 atm to 9.98 GPa), showing a pressure‐triggered aggregation‐induced emission in the range 1.0 atm–0.65 GPa. The photoactivated CDs with piezochromic fluorescence enhancement broadens the versatility of CDs from ambient to high‐pressure conditions and enhances their anti‐photobleaching.  相似文献   
1000.
Carbon aerogels (CAs) with 3D interconnected networks hold promise for application in areas such as pollutant treatment, energy storage, and electrocatalysis. In spite of this, it remains challenging to synthesize high‐performance CAs on a large scale in a simple and sustainable manner. We report an eco‐friendly method for the scalable synthesis of ultralight and superporous CAs by using cheap and widely available agarose (AG) biomass as the carbon precursor. Zeolitic imidazolate framework‐8 (ZIF‐8) with high porosity is introduced into the AG aerogels to increase the specific surface area and enable heteroatom doping. After pyrolysis under inert atmosphere, the ZIF‐8/AG‐derived nitrogen‐doped CAs show a highly interconnected porous mazelike structure with a low density of 24 mg cm?3, a high specific surface area of 516 m2 g?1, and a large pore volume of 0.58 cm?3 g?1. The resulting CAs exhibit significant potential for application in the adsorption of organic pollutants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号