首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A comparison of the analytical characteristics of two tyramine biosensors, based on graphene oxide (GRO) and polyvinylferrocene (PVF) modified screen‐printed carbon electrodes (SPCE), is reported. Diamine oxidase (DAOx) or monoamine oxidase (MAOx) was immobilized onto the PVF/GRO modified SPCE to fabricate the biosensors. Surface characteristics and electrochemical behaviour of the modified SPCEs were investigated by atomic force microscopy (AFM), scanning electron microscopy (SEM), energy dispersive X‐ray spectroscopy (EDX) and cyclic voltammetry (CV). Electrode surface composition and experimental variables such as pH and working potential were optimized in order to ensure a high performance. Under optimum experimental conditions, both DAOx/PVF/GRO/SPCE and MAOx/PVF/GRO/SPCE biosensors exhibited wide linear dynamic ranges for tyramine from 9.9×10?7 to 1.2×10?4 M and from 9.9×10?7 to 1.1×10?4 M, respectively. MAOx/PVF/GRO/SPCE biosensor showed higher sensitivity (11.98 μA mM?1) for tyramine determination than the DAOx/PVF/GRO/SPCE biosensor (7.99 μA mM?1). The substrate specifity of the biosensors to other biogenic amines namely histamine, putrescine, spermine, spermidine, tryptamine, β‐phenylethylamine and cadaverine was also investigated. The developed biosensors were successfully used for tyramine determination in cheese sample.  相似文献   

2.
A new procedure for the speciation of chromium by means of differential pulse voltammetry using screen‐printed carbon electrodes (SPCEs) has been proposed. Two different modified carbon working, a Ag/AgCl reference and a carbon counter screen‐printed electrodes have been connected in array mode for the simultaneous determination of Cr(III) and Cr(VI). Mercury films or gold nanoparticles have been ground onto the SPCEs in order to improve their selectivity to each chromium species. The quantification of the peak currents observed at ?1.25 V in Hg‐SPCE and ?0.1 V in AuNPs‐SPCE were carried out. The method has been applied to the speciation of chromium in waste water from a tannery factory.  相似文献   

3.
An amperometric tyramine biosensor based on poly‐L‐lysine (PLL) and Fe3O4 nanoparticles (Fe3O4NP) modified screen printed carbon electrode (SPCE) was developed. PLL was formed on the SPCE by the electropolymerization of L‐lysine. Subsequently, Fe3O4NP suspension prepared in chitosan (CH) solution was casted onto the PLL/SPCE. Tyrosinase (Ty) enzyme was immobilized onto the modified Fe3O4?CH/PLL/SPCE and the electrode was coated with Nafion to fabricate the Ty/Fe3O4?CH/PLL/SPCE. Different techniques including scanning electron microscopy, chronoamperometry (i–t curve), cyclic voltammetry and electrochemical impedance spectroscopy were utilized to study the fabrication processes, electrochemical characteristics and performance parameters of the biosensor. The analytical performance of the tyramine biosensor was evaluated with respect to linear range, sensitivity, limit of detection, repeatability and reproducibility. The response of the biosensor to tyramine was linear between 4.9×10?7–6.3×10?5 M with a detection limit of 7.5×10?8 M and sensitivity of 71.36 μA mM?1 (595 μA mM?1 cm?2). The application of the developed biosensor for the determination of tyramine was successfully tested in cheese sample and mean analytical recovery of added tyramine in cheese extract was calculated as 101.2±2.1 %. The presented tyramine biosensor is a promising approach for tyramine analysis in real samples due to its high sensitivity, rapid response and easy fabrication.  相似文献   

4.
A simple layer‐by‐layer (LBL) assembly strategy was established for constructing a novel reagentless biosensor based on a nanocomposite of methylene blue multiwalled carbon nanotubes (MB‐MWNTs). A nanocomposite of MB‐MWNTs was obtained by direct premixing and possessed good dispersion in barbital‐HCl buffer. Through electrostatic interactions, the nanocomposite of MB‐MWNTs could alternately be assembled with horseradish peroxidase (HRP) on the Au electrode modified with precursor films. UV/Vis spectra and scanning electron microscopy (SEM) were applied to reveal the formation of the nanocomposite of MB‐MWNTs. The LBL assembly process was also verified by electrochemical impedance spectroscopy (EIS). The MB is a well‐established mediator and efficiently facilitated the electron shuttle between the HRP and the electrode, as demonstrated by the cyclic voltammetry (CV) measurements. The as‐prepared reagentless biosensor exhibited a fast response for the determination of hydrogen peroxide (H2O2) and reached 95% of the steady‐state current within 3 s. It was found that the linear response range of the reagentless biosensor for H2O2 was from 4.0 μM to 3.78 mM with a detection limit of 1.0 μM and a sensitivity of 22.5 μA mM−1. The biosensor exhibited a high reproducibility and stability.  相似文献   

5.
A new convenient strategy to fabricate a third‐generation hydrogen peroxide biosensor was described. The screen‐printed carbon electrode (SPCE) was first modified with a layer of 4‐nitrophenyl assembled from the 4‐nitroaniline diazonium salt synthesized in situ in acidic aqueous solution. Next, the nitro groups were converted to amines followed by crosslinking to the horseradish peroxidase (HRP) by glutaraldehyde. The redox chemistry of the active center of the HRP was observed and the HRP‐modified electrode displayed electrocatalytic activity towards the reduction of hydrogen peroxide (H2O2) without any mediators. H2O2 was determined in a linear range from 5.0 μM to 50.0 μM, with a detection limit of 1.0 μM. Furthermore, the biosensor exhibited fast amperometric response, good reproducibility and long‐term stability.  相似文献   

6.
《Electroanalysis》2004,16(4):268-274
An amperometric method for the determination of the neurotoxic amino acid β‐N‐oxalyl‐L ‐α,β‐diaminopropionic acid (β‐ODAP) using a screen printed carbon electrode (SPCE) is reported. The electrode material was bulk‐modified with manganese dioxide and used as a detector in flow injection analysis (FIA). The enzyme glutamate oxidase (GlOx) was immobilized in a Nafion‐film on the electrode surface. The performance of the biosensor was optimized using glutamate as an analyte. Optimum parameters were found as: operational potential 440 mV (vs. Ag/AgCl), flow rate 0.2 mL min?1, and carrier composition 0.1 mol L?1 phosphate buffer (pH 7.75). The same conditions were used for the determination of β‐ODAP. The signal was linear within the concentration range 53–855 μmol L?1 glutamate and 195–1950 μmol L?1 β‐ODAP. Detection limits (as 3σ value) for both analytes were 9.12 and 111.0 μmol L?1, respectively, with corresponding relative standard deviations of 3.3 and 4.5%. The biosensor retained more than 73% of its activity after 40 days of on‐line use.  相似文献   

7.
《Electroanalysis》2004,16(23):1992-1998
A carbon nanotubes‐based amperometric cholesterol biosensor has been fabricated through layer‐by‐layer (LBL) deposition of a cationic polyelectrolyte (PDDA, poly(diallyldimethylammonium chloride)) and cholesterol oxidase (ChOx) on multi‐walled carbon nanotubes (MWNTs)‐modified gold electrode, followed by electrochemical generation of a nonconducting poly(o‐phenylenediamine) (PPD) film as the protective coating. Electrochemical impedance measurements have shown that PDDA/ChOx multilayer film could be formed uniformly on MWNTs‐modified gold electrode. Due to the strong electrocatalytic properties of MWNTs toward H2O2 and the low permeability of PPD film for electroacitve species, such as ascorbic acid, uric acid and acetaminophen, the biosensor has shown high sensitivity and good anti‐interferent ability in the detection of cholesterol. The effect of the pH value of the detection solution on the response of the biosensor was also investigated. A linear range up to 6.0 mM has been observed for the biosensor with a detection limit of 0.2 mM. The apparent Michaelis‐Menten constant and the maximum response current density were calculated to be 7.17 mM and 7.32 μA cm?2, respectively.  相似文献   

8.
Chronoamperometric assays based on tyrosinase and glucose oxidase (GOx) inactivation have been developed for the monitoring of Cr(III) and Cr(VI). Tyrosinase was immobilized by crosslinking on screen-printed carbon electrodes (SPCEs) containing tetrathiafulvalene (TTF) as electron transfer mediator. The tyrosinase/SPCTTFE response to pyrocatechol is inhibited by Cr(III). This process, that is not affected by Cr(VI), allows the determination of Cr(III) with a capability of detection of 2.0 ± 0.2 μM and a reproducibility of 5.5%. GOx modified screen-printed carbon platinised electrodes (SPCPtEs) were developed for the selective determination of Cr(VI) using ferricyanide as redox mediator. The biosensor was able to discriminate two different oxidation states of chromium being able to reject Cr(III) and to detect the toxic species Cr(VI). Chronoamperometric response of the biosensor towards glucose decreases with the presence of Cr(VI), with a capability of detection of 90.5 ± 7.6 nM and a reproducibility of 6.2%. A bipotentiostatic chronoamperometric biosensor was finally developed using a tyrosinase/SPCTTFE and a GOx/SPCPtE connected in array mode for the simultaneous determination of Cr(III) and Cr(VI) in spiked tap water and in waste water from a tannery factory samples.  相似文献   

9.
《Electroanalysis》2017,29(5):1222-1231
A microbial sensor, namely carbon paste electrode (CPE) modified with Citrobacter freundii (Cf–CPE) has been developed for the detection of hexavalent (Cr(VI)) and trivalent (Cr(III)) chromium present in aqueous samples using voltammetry, an electroanalytical technique. The biosensor developed, demonstrated about a twofold higher performance as compared to the bare CPE for the chosen ions. Using cyclic voltammetry and by employing the fabricated Cf–CPE, the lowest limit of detection (LLOD) of 1x10−4 M and 5x10−4 M for Cr(VI) and Cr(III) ions respectively could be achieved. By adopting the Differential Pulse Cathodic Stripping Voltammetric technique, the LLOD could be further improved to 1x10−9 M and 1x10−7 M for Cr(VI) and Cr(III) ions respectively using the biomodified electrodes. The reactions occurring at the electrode surface‐chromium solution interface and the mechanisms of biosorption of chromium species onto the biosensor are discussed. The stability and utility of the developed biosensor for the analysis of Cr(VI) and Cr(III) ions in chromite mine water samples has been evaluated.  相似文献   

10.
《Electroanalysis》2017,29(9):2053-2061
We herein report the use of melamine and a low‐cost screen‐printed carbon electrode (SPCE) as the base matrices for the preparation of an electrochemical biosensor. Following the electrochemical polymerization of melamine, the resulting polymelamine was deposited on the SPCE surface to give layers bearing –NH2 functional groups, which allowed the attachment of anti‐IgE (immunoglobulin E) antibodies. The resulting anti‐IgE‐labeled SPCEs were then incubated with IgE solutions of various concentrations prior to analysis by chronoamperometry using Ru(NH3)63+ as an electrochemical mediator. A logarithmic relationship was observed between the chronoamperometric current and the IgE concentration between 5.3 and 530 fM (i. e. over 2 orders of magnitude). In addition, a detection limit of 0.64 fM was achieved in addition to a recovery of 114 ± 14 % for a fetal bovine serum sample spiked with 16 fM IgE. Furthermore, only a small quantity of sample was required for analysis, and the IgE assay was suitable for use in a complex serum matrix without interference. We therefore expect that this novel system will be useful for monitoring the changes in blood IgE levels during the clinical treatment of allergic asthma and rhinitis.  相似文献   

11.
Here we report the first mediated pain free microneedle‐based biosensor array for the continuous and simultaneous monitoring of lactate and glucose in artificial interstitial fluid (ISF). The gold surface of the microneedles has been modified by electrodeposition of Au‐multiwalled carbon nanotubes (MWCNTs) and successively by electropolymerization of the redox mediator, methylene blue (MB). Functionalization of the Au‐MWCNTs/polyMB platform with the lactate oxidase (LOX) enzyme (working electrode 1) and with the FAD‐Glucose dehydrogenase (FADGDH) enzyme (working electrode 2) enabled the continuous monitoring of lactate and glucose in the artificial ISF. The lactate biosensor exhibited a high sensitivity (797.4±38.1 μA cm?2 mM?1), a good linear range (10–100 μM) with a detection limit of 3 μM. The performance of the glucose biosensor were also good with a sensitivity of 405.2±24.1 μA cm?2 mM?1, a linear range between 0.05 and 5 mM and a detection limit of 7 μM. The biosensor array was tested to detect the amount of lactate generated after 100 minutes of cycling exercise (12 mM) and of glucose after a normal meal for a healthy patient (10 mM). The results reveal that the new microneedles‐based biosensor array seems to be a promising tool for the development of real‐time wearable devices with a variety of sport medicine and clinical care applications.  相似文献   

12.
《Electroanalysis》2005,17(14):1285-1290
An acetylcholine (ACh) biosensor has been fabricated with bienzymes/poly(diallyldimethylammonium chloride) (PDDA) multilayer film‐modified platinum (Pt) electrodes by a layer‐by‐layer technique (LBL). The ACh biosensor was optimized and the properties are described. This ACh biosensor was used for the detection of organophosphate pesticide trichlorfon. The detection limits (found 0.001 μg/mL for trichlorfon) make it possible to detect the pollutants. This simple protocol of biosensor preparation, high sensitivity and stability are very promising for the determination of environmental pollutants in field conditions.  相似文献   

13.
Enzymatic amperometric procedures for measurement of Hg (II), based on the inhibitive action of this metal on urease enzyme activity, were developed. Screen-printed carbon electrodes (SPCEs) and gold nanoparticles modified screen-printed carbon electrodes (AuNPs/SPCEs) were used as supports for the cross-linking inmobilization of the enzyme urease. The amperometric response of urea was affected by the presence of Hg (II) ions which caused a decreasing in the current intensity. The optimum working conditions were found using experimental design methodology. Under these conditions, repeatability and reproducibility for both types of biosensors were determined, reaching values below 6% in terms of residual standard deviation. The detection limit obtained for Hg (II) was 4.2 × 10?6 M for urease/SPCE biosensor and 5.6 × 10?8 M for urease/AuNPs/SPCE biosensor. Analysis of the possible effect of the presence of foreign ions in the solution was performed. The method was applied to determine levels of Hg (II) in spiked human plasma samples.  相似文献   

14.
《Electroanalysis》2005,17(7):571-578
A two step non‐competitive affinity method for the trace determination of 1‐hydroxypyrene (1‐OHP) using a disposable molecularly imprinted polymer (MIP) modified screen‐printed carbon electrode (MIP‐SPCE) has been developed. The MIP was synthesized according to a novel strategy, which is described, and is capable of rebinding the phenolic analyte, 1‐hydroxypyrene (1‐OHP), from high pH aqueous organic media, via ionic interactions. In the first step of our method 1‐OHP was accumulated at the MIP‐SPCE from 35% aqueous methanol containing 0.014 M NaOH and 0.14 M NaCl, at open circuit. In the second step, the resulting SPCE with accumulated 1‐OHP was then transferred to fresh, clean phosphate buffered aqueous methanol, and subjected to cyclic voltammetry (CV) or differential pulse voltammetry (DPV). The latter technique proved to be more sensitive at detecting 1‐OHP, with a limit of detection of 182 nM and a linear range to 125 μM on unmodified electrodes. The possible effects of interference by related phenolic compounds in the MIP‐SPCE of 1‐OHP were investigated. Finally the method was evaluated by carrying out 1‐OHP determinations on spiked human urine samples; the recovery of 1‐OHP was 79.4% and the coefficient of variation was found to be 7.7% (n= 4) using a separate MIP‐SPCE for each determination. Therefore, the performance data suggests that the method is reliable at the concentrations examined in this study. The method was found to be superior to the direct determination of 1‐OHP in human urine by DPV alone, which was greatly affected by interference from uric acid.  相似文献   

15.
《中国化学会会志》2018,65(8):982-988
CuAg nanoparticles (CuAgNPs) were electrochemically formed in situ on pre‐anodized, screen‐printed carbon electrodes (SPCEs) that possessed many oxygen‐containing functional groups capable of adsorbing metal ions, namely Cu2+ and Ag+. Pre‐anodization was achieved using continuous cyclic voltammetry in the range of potential 0.3–2.0 V under a scan rate of 50 mV/s. Cu2+ and Ag+ ions were adsorbed on the pre‐anodized SPCE by immersing the electrode in solutions containing both metal ions, and then CuAgNPs were formed in situ via electrochemical reduction in a deaerated, neat NaClO4 solution after the electrode was ultrasonicated to remove physically adsorbed metal ions. Although CuNPs showed higher activity than AgNPs toward both nitrate (NO3) and nitrite (NO2) ions, the instability of CuNPs hindered the application, so CuAgNPs were employed to achieve a compromise between sensitivity and stability. The SPCE/anodized/CuAgNP electrodes showed activity toward the electrochemical reduction of NO3 and NO2, respectively, with the limit of detection (LOD) of 15.6 μM (0.97 ppm) and 11.1 μM (0.51 ppm), which is sufficient to fit the allowed values (50 and 3 ppm, respectively) in drinking water as suggested by the World Health Organization (WHO).  相似文献   

16.
A novel electrochemical approach for direct recognition of antibiotic phenazine‐1‐carboxylic acid (PCA) was developed. PCA was electropolymerized on preanodized screen‐printed carbon electrode (SPCE*‐PCA) through repetitive cyclic voltammetry and characterized by XPS and FESEM. Electron transfer involved intermediate phenomenon of diffusion‐controlled redox process and surface bound redox reaction. At pH 8 (optimum), SPCE*‐PCA had a detection limit of 0.51±0.04 μM, a quantification limit of 1.7±0.13 μM, linearity of up to 50 µM, a repeatability of 15.5 % and a reproducibility of 1.7 %. PCA secreted by Pseudomonas chlororaphis subsp. aureofaciens BCRC 11057T was investigated successfully using present single run approach.  相似文献   

17.
《Electroanalysis》2005,17(23):2147-2155
A laccase biosensor, in which the enzyme was immobilized on N‐succinimidyl‐3‐thiopropionate (NSTP)‐modified gold electrodes, is reported. Two different approaches for the preparation of N‐succinimidyl‐terminated monolayers were evaluated: a) activation of a preformed 3‐mercaptopropionic acid (MPA) SAM by reaction with 1‐(3‐dimethylaminopropyl)‐ 3‐ethylcarbodiimide (EDC) and N‐hydroxysulfosuccinimide (NHS); b) assembling of dithiobisuccinimidyl propionate (DTSP). NSTP‐modified electrodes were characterized by cyclic voltammetry and electrochemical impedance spectroscopy. Biosensors prepared by covalent binding of the enzyme and by cross‐linking with glutaraldehyde atop NSTP‐modified electrodes were compared in terms of sensitivity and operational range for caffeic acid. A much better analytical performance was found using the latter approach. Variables affecting the amperometric detection (enzyme loading, pH and applied potential) were optimized. The operational stability and characteristics of functioning of the laccase biosensor in terms of repeatability of the amperometric measurements, reproducibility with different biosensors and useful lifetime, were evaluated. The kinetic parameters of the enzyme reactions and the analytical characteristics of the corresponding calibration plots were calculated for eight phenolic compounds. Limits of detection of 0.07 μM, 0.05 μM and 0.09 μM were obtained for caffeic acid, catechol and 3,4‐dihydroxyphenylacetic acid (DOPAC), respectively. The practical usefulness of the developed biosensor was evaluated by estimating the “pool” of phenolic compounds in olive oil mill wastewaters (OMW).  相似文献   

18.
《Electroanalysis》2017,29(10):2377-2384
Newly synthesized poly(styrene‐g‐oleic amide) was coated onto a rhodium nanoparticle modified glassy carbon (GC) surface for the fabrication of horseradish peroxidase based biosensor used for hydrogen peroxide detection. The rhodium modifed electrode presented ten times higher signal than unmodified electrode even at low elecrtroactive enzyme quantity by enhancing the electron transfer rate at the applied potential of −0.65 V. The biosensor designed by under the optimized rhodium electrodeposition time exhibited a fast response less than 5 s, an excellent operational stability with a relative standard deviation of 0.6 % (n=6), an accuracy of 96 % and a large linear range between 50 μM and 120 mM for hydrogen peroxide. Detection limit and the sensitivity parameters were calculated to be 44 μM and 57 μA mM−1 cm−2, respectively by preserving its entire initial response up to the 15 days, while only 20 % of its initial response was lost at the end of one month.  相似文献   

19.
The present work describes the fabrication of paper‐based analytical devices (μPADs) by immobilization of glucose oxidase onto the screen printed carbon electrodes (SPCEs) for the electrochemical glucose detection. The sensitivity towards glucose was improved by using a SPCE prepared from homemade carbon ink mixed with cellulose acetate. In addition, 4‐aminophenylboronic acid (4‐APBA) was used as a redox mediator giving a lower detection potential for improvement selectivity. Under optimized condition, the detection limit was 0.86 mM. The proposed device was applied in real samples. This μPAD has many advantages including low sample consumption, rapid analysis method, and low device cost.  相似文献   

20.
Two different D‐dimer disposable amperometric immunosensing designs based on indirect competitive or sandwich formats and the use of carboxylic acid‐modified magnetic beads (COOH‐MBs) and screen‐printed carbon electrodes (SPCEs) have been developed and compared. In both approaches, the resulting modified MBs were magnetically captured on the surface of a SPCE which was used as the transducer for the electrochemical detection at ?0.20 V upon addition of H2O2, and hydroquinone (HQ). Both configurations exhibited linear ranges of clinical usefulness and detection limits quite below the clinical threshold (0.5 µg mL?1 D‐dimer). The sandwich configuration has been successfully tested with serum samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号