首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10908篇
  免费   726篇
  国内免费   174篇
化学   5497篇
晶体学   55篇
力学   854篇
综合类   1篇
数学   2318篇
物理学   3083篇
  2024年   11篇
  2023年   207篇
  2022年   117篇
  2021年   219篇
  2020年   322篇
  2019年   116篇
  2018年   218篇
  2017年   230篇
  2016年   371篇
  2015年   439篇
  2014年   562篇
  2013年   614篇
  2012年   837篇
  2011年   946篇
  2010年   658篇
  2009年   604篇
  2008年   684篇
  2007年   662篇
  2006年   660篇
  2005年   505篇
  2004年   395篇
  2003年   366篇
  2002年   269篇
  2001年   292篇
  2000年   203篇
  1999年   217篇
  1998年   166篇
  1997年   133篇
  1996年   112篇
  1995年   68篇
  1994年   72篇
  1993年   54篇
  1992年   40篇
  1991年   37篇
  1990年   31篇
  1989年   43篇
  1988年   98篇
  1987年   14篇
  1985年   35篇
  1984年   28篇
  1983年   19篇
  1982年   21篇
  1981年   9篇
  1980年   14篇
  1979年   10篇
  1978年   9篇
  1977年   8篇
  1975年   8篇
  1974年   6篇
  1973年   7篇
排序方式: 共有10000条查询结果,搜索用时 531 毫秒
1.
Employing radical bridges between anisotropic metal ions has been a viable route to achieve high-performance single-molecule magnets (SMMs). While the bridges have been mainly considered for their ability to promote exchange interactions, the crystal-field effect arising from them has not been taken into account explicitly. This lack of consideration may distort the understanding and limit the development of the entire family. To shed light on this aspect, herein we report a theoretical investigation of a series of N -radical-bridged diterbium complexes. It is found that while promoting strong exchange coupling between the terbium ions, the N -radical induces a crystal field that interferes destructively with that of the outer ligands, and thus reduces the overall SMM behavior. Based on the theoretical results, we conclude that the SMM behavior in this series could be further maximized if the crystal field of the outer ligands is designed to be collinear with that of the radical bridge. This conclusion can be generalized to all exchange-coupled SMMs.  相似文献   
2.
Zhang  Junyu  Hong  Mingyi  Zhang  Shuzhong 《Mathematical Programming》2022,194(1-2):901-935
Mathematical Programming - In this paper, we study the lower iteration complexity bounds for finding the saddle point of a strongly convex and strongly concave saddle point problem: $$\min _x\max...  相似文献   
3.
Laser cooling of a molecule with heavy nuclei is often complicated because of the density distribution of the electronic states. Here, we evaluate the feasibility of the laser cooling of the SrI molecule by calculating the potential energy curves and transition dipole moments of the ground and low-lying excited states using the multi-reference configuration interaction plus Davidson corrections (MRCI + Q) and the all-electron basis sets of ANO-RCC. The relativistic effect and the spin-orbit coupling splits are included, because both Sr and I are heavy atoms. Based on the obtained potential energy curves, we solve the Schrödinger equation of nuclear motion to determine the rovibrational energy levels and the Franck-Condon factors. The spectroscopic parameters are obtained by fitting the rovibrational energy levels with the Dunham expression. The radiation lifetimes, the Doppler and recoil temperatures between the X2Σ+ and the 2Π1/2/2Π3/2/B2Σ+ states are calculated. 5-color laser cooling schemes for the molecule are proposed, which can lead to the total effective Franck-Condon factors being 0.99983, 0.99979, and 0.99941 for the three transitions, respectively. All the obtained results suggest that the SrI molecule is a feasible candidate for laser cooling.  相似文献   
4.
Wacker oxidation is an industry-adopted process to transform olefins into value-added epoxides and carbonyls. However, traditional Wacker oxidation involves the use of homogeneous palladium and copper catalysts for the olefin addition and reductive elimination. Here, we demonstrated an ultrahigh loading Cu single atom catalyst(14% Cu, mass fraction) for the palladium-free Wacker oxidation of 4-vinylanisole into the corresponding ketone with N-methylhydroxylamine hydrochloride as an additive under mild conditions. Mechanistic studies by 18O and deuterium isotope labelling revealed a hydrogen shift mechanism in this palladium-free process using N-methylhydroxylamine hydrochloride as the oxygen source. The reaction scope can be further extended to Kucherov oxidation. Our study paves the way to replace noble metal catalysts in the traditional homogeneous processes with single atom catalysts.  相似文献   
5.
Cheung  Yun Kuen  Cole  Richard  Tao  Yixin 《Mathematical Programming》2021,190(1-2):615-677
Mathematical Programming - We seek tight bounds on the viable parallelism in asynchronous implementations of coordinate descent that achieves linear speedup. We focus on asynchronous coordinate...  相似文献   
6.
7.
The accumulation of material degradation under contact with aggressive aqueous environments could lead to reduced structural reliability. In terms of hydrated cementitious materials, such interactions often result in the chemo-physical-mechanical (CPM) degradation, which represents a multiphysics process of high non-linearity and complexity. By further considering the inevitable uncertainties associated with both the materials and the serving conditions, solving such a process requires novel probabilistic approaches. This paper presents a stochastic chemo-physical-mechanical (SCPM) degradation analysis on the hydrated cement under acidic environment. The SCPM analysis consists of modelling the stochastic chemophysical degradation by finite element method, and assessing the mechanical deterioration through analytical micromechanics. The proposed modelling framework couples the conventional Monte Carlo Simulation with a novel support vector regression algorithm. The present method is able to not only address the detailed degradation mechanisms, but also ensure low computational costs for an accurate SCPM degradation assessment.  相似文献   
8.
9.
A strategy based on covalent organic frameworks for ultrafast ion transport involves designing an ionic interface to mediate ion motion. Electrolyte chains were integrated onto the walls of one-dimensional channels to construct ionic frameworks via pore surface engineering, so that the ionic interface can be systematically tuned at the desired composition and density. This strategy enables a quantitative correlation between interface and ion transport and unveils a full picture of managing ionic interface to achieve high-rate ion transport. Moreover, the effect of interfaces was scaled on ion transport; ion mobility is increased in an exponential mode with the ionic interface. This strategy not only sets a benchmark system but also offers a general guidance for designing ionic interface that is key to systems for energy conversion and storage.  相似文献   
10.
Incorporation of a non-hexagonal ring into a nanographene framework can lead to new electronic properties. During the attempted synthesis of naphthalene-bridged double [6]helicene and heptagon-containing nanographene by the Scholl reaction, an unexpected azulene-embedded nanographene and its triflyloxylated product were obtained, as confirmed by X-ray crystallographic analysis and 2D NMR spectroscopy. A 5/7/7/5 ring-fused substructure containing two formal azulene units is formed, but only one of them shows an azulene-like electronic structure. The formation of this unique structure is explained by arenium ion mediated 1,2-phenyl migration and a naphthalene to azulene rearrangement reaction according to an in-silico study. This report represents the first experimental example of the thermodynamically unfavorable naphthalene to azulene rearrangement and may lead to new azulene-based molecular materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号