首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9537篇
  免费   1144篇
  国内免费   939篇
化学   5349篇
晶体学   121篇
力学   979篇
综合类   7篇
数学   1069篇
物理学   4095篇
  2024年   21篇
  2023年   473篇
  2022年   288篇
  2021年   362篇
  2020年   515篇
  2019年   330篇
  2018年   347篇
  2017年   471篇
  2016年   517篇
  2015年   536篇
  2014年   626篇
  2013年   586篇
  2012年   760篇
  2011年   623篇
  2010年   587篇
  2009年   555篇
  2008年   411篇
  2007年   476篇
  2006年   580篇
  2005年   296篇
  2004年   210篇
  2003年   201篇
  2002年   191篇
  2001年   269篇
  2000年   147篇
  1999年   269篇
  1998年   157篇
  1997年   97篇
  1996年   88篇
  1995年   74篇
  1994年   60篇
  1993年   55篇
  1992年   64篇
  1991年   95篇
  1990年   81篇
  1989年   60篇
  1988年   49篇
  1987年   20篇
  1986年   20篇
  1985年   18篇
  1984年   11篇
  1983年   7篇
  1982年   2篇
  1981年   8篇
  1979年   2篇
  1965年   2篇
  1957年   2篇
  1936年   1篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
91.
0引言一直以来,钙磷生物材料如羟基磷灰石(hy-droxyapatite,HA)由于其成份与骨的无机成份相似,具有良好的生物相容性,作为骨修复材料引起了人们广泛的兴趣。磷酸钙骨水泥是一类可在生理条件下自固化的非陶瓷型类HA人工骨材料,这种由磷酸钙骨水泥(calcium phosphate cement,CPC)转变而成的HA,与天然骨磷灰石有类似的组成结构,植入人体后可参与新陈代谢,促进骨组织生长[1,2]。一些研究显示,CPC具有成骨活性和生物降解性,在体内被吸收的同时可引导新骨的生成,从而可克服自体骨、磷酸三钙陶瓷因吸收降解过快造成的局部缺陷以及陶瓷型HA长…  相似文献   
92.
Blends of recycled poly(ethylene terephthalate) (R-PET) and linear low density polyethylene (LLDPE) were compatibilized with poly(styrene-ethylene/butyldiene-styrene) (SEBS) and maleic anhydride-grafted poly(styrene-ethylene/butyldiene-styrene) (SEBS-g-MA). Effects of compatilizer were evaluated systematically by study of mechanical, thermal and morphology properties together with crystallization behavior of PET. Tensile properties of the blends were improved effectively by the addition of 10 wt% SEBS-g-MA, elongation at break and charpy impact strength were increased with the increasing content of compatilizer. SEBS-g-MA is more effectual on mechanical properties of R-PET/LLDPE blends than SEBS. DSC analysis illustrates crystallinities of PET and LLDPE were increased by compatilizer at annealing condition. WAXD and FT-IR spectra show that annealing influences crystallization behavior of PET. Different compatilizer content results in different morphology structure, in particular, higher SEBS-g-MA content can induce the formation of a salami microstructure.  相似文献   
93.
负载贵金属光催化剂的光催化活性研究   总被引:13,自引:0,他引:13  
在注入V离子的二氧化钛光催化剂上负载贵金属,制备了在可见光照射下具有高光催化活性的功能型光催化剂,研究在可见光和太阳光照射下丙炔的光催化水解反应,利用这些改性的二氧化钛构筑太阳能到化学能的转换系统.研究结果发现了V/Pt光催化剂在丙炔和水的光催化水解反应中,由于贵金属的存在,有利于促进发生加氢反应;导致丙烯的生成量增加.在可见光下的光催化活性也和负载贵金属所处的氧化状态有着密切的关系,贵金属完全被还原到0价是提高光催化活性的必要条件.  相似文献   
94.
An industrial iron-based catalyst (100Fe/5Cu/6K/16SiO2, by weight) was characterized after reduction at different temperatures and after Fischer–Tropsch synthesis (FTS) in a stirred tank slurry reactor (STSR). The BET surface area and pore volume of the catalyst decreases with increasing reduction temperature, and the contrary trend was found for pore size. The iron phase compositions of catalysts reduced with syngas were strongly dependent on pretreatment conditions employed. Pretreatment with syngas at lower temperature prevents iron catalyst activation. Carburization was intensified with the increase in reduction temperature. The formation of iron carbides in reduced catalyst was necessary for obtaining stable high FTS activity. The relationship between the amount of CO2 in tail gas during activation and the Fe3+ (spm) content in the reduced catalyst was observed. The rapid carburization at high reduction temperature resulted in the formation of a superparamagnetic Fe3+ core and an iron carbide layer of the reduced catalyst. FTS activity decreased with the increase in the reduction temperature, but the stability distinctly improved. It was found that the working catalyst loss in the heavier waxy products resulted in higher deactivation rate of the catalyst reduced at lower temperature. With the increase in the reduction temperature, the product distribution shifted towards the lower molecular weight products.  相似文献   
95.
《中国化学快报》2020,31(5):1317-1321
Dipyrrolyldiketone difluoroboron complexes (BONEPYs) were synthesized by condensation of the corresponding pyrroles and malonyl chloride followed by treatment with BF3·OEt2. The aryl-substituted pyrrole is introduced to form a cyclic system in order to investigate anion binding studies. In BONEPYs 1–3 the o-H of the aryl group forms hydrogen bonding with F to give a more table complex. In contrast, the intramolecular hydrogen-bonded BONEPY endo-4 is more stable than its exo isomer. While adding F, the hydrogen bonds must be broken first to give 4·(3)F. Owing to the electron-rich group (-OMe), the o-H of the phenyl group can hardly interact with F via hydrogen bonding to give the less stable complex 4·(5)F. The energy differences between the different conformations were calculated using DFT methods, which is consistent to the experimental observations.  相似文献   
96.
An efficient method has been developed for one-pot three-component coupling reactions of various aldehydes, 1-cyclohexen-2-one, and primary or secondary amines in the presence of a catalytic amount of Yb(OTf)3 under mild conditions to afford the corresponding 2-arylmethyl N-substituted anilines in good yields. In addition, the catalyst was easily recovered and could be reused for at least four cycles without any loss of activity.  相似文献   
97.
《Tetrahedron: Asymmetry》2006,17(18):2593-2595
A new synthetic approach affording, for the first time chiral binaphthalene derivatives via an asymmetric Negishi reaction, in good yields (55–95%) and good enantioselectivities (49–85% ee), is reported.  相似文献   
98.
纳米色料的制备及应用   总被引:1,自引:0,他引:1  
纳米色料是一类可以结合颜料和染料两者优点的新型色料,除了在传统的着色领域具有独特优势外,在光电高新技术领域也具有广阔的应用前景。本文综述了国内外有机纳米色料在制备和应用上的最新研究进展,归纳出几种有代表性的制备有机纳米色料以及有机色料/无机物杂合纳米色料的最新研究方法。着重论述了细乳液聚合法制备纳米色料,对各种制备方法作出比较评价,并结合研究现状对纳米色料在光电领域的应用提出了一些设想。  相似文献   
99.
A new compound of 4,4'-diamino-N,N'-diethyl bisbenzenesulfamide (C18H26N4O4S2,Fw = 426.55) has been synthesized and its structure was determined by X-ray crystallography method. The crystal belongs to the monoclinic system, space group P21/c with a = 10.0623(9), b =13.6759(13), c =15.5309(14) (A),β = 100.482(2)°, V= 2101.6(3)(A)3, Dc = 1.348 g/cm3, F(000) = 904,μ = 0.285 mm-1, Z = 4, the final R = 0.0512 and wR = 0.1363 for 3485 observed reflections with I >2σ(Ⅰ). The structure of the title compound is pseudo secondary axisymmetric, and the two sulfamide-groups show distorted tetrahedral configurations.  相似文献   
100.
Despite the versatility of amphoteric molecules, stable and easily accessible ones are still limitedly known. As a result, the discovery of new amphoteric reactivity remains highly desirable. Herein we introduce 3-aminooxetanes as a new family of stable and readily available 1,3-amphoteric molecules and systematically demonstrated their amphoteric reactivity toward polarized π-systems in a diverse range of intermolecular [3 + 2] annulations. These reactions not only enrich the reactivity of oxetanes, but also provide convergent access to valuable heterocycles.

Despite the versatility of amphoteric molecules, stable and easily accessible ones are still limitedly known.

Amphoteric molecules, which bear both nucleophilic and electrophilic sites with orthogonal reactivity, represent an attractive platform for the development of chemoselective transformations.1 For example, isocyanides are well-established 1,1-amphoteric molecules, with the terminal carbon being both nucleophilic and electrophilic, and this feature has enabled their exceptional reactivity in numerous multi-component reactions.2 In the past few decades, substantial effort has been devoted to the search for new amphoteric molecules.1–5 Among them, 1,3-amphoteric molecules proved to be versatile. The Yudin and Beauchemin laboratories have independently developed two types of such molecules, α-aziridine aldehydes and amino isocyanates, respectively.4,5 With an electrophilic carbon and a nucleophilic nitrogen in relative 1,3-positions, these molecules are particularly useful for the chemoselective synthesis of heterocycles with high bond-forming efficiency without protective groups (Fig. 1). However, such elegant amphoteric systems still remain scarce. Therefore, the development of new stable amphoteric molecules with easy access remains highly desirable.Open in a separate windowFig. 1Representative [1,3]-amphoteric molecules versus 3-aminooxetanes.In this context, herein we introduce 3-aminooxetanes as a new type of 1,3-amphoteric molecules and systematically demonstrate their reactivity in a range of [3 + 2] annulations, providing rapid access to diverse heterocycles. Notably, 3-aminooxetanes are bench-stable and either commercially available or easily accessible. However, their amphoteric reactivity has not been appreciated previously.Oxetane is a useful functional group in both drug discovery and organic synthesis.6–9 Owing to the ring strain, it is prone to nucleophilic ring-opening, in which it serves as an electrophile (Scheme 1A).6–8 We envisioned that, if a nucleophilic group is installed in the 3-position (e.g., amino group), such molecules should exhibit 1,3-amphoteric reactivity due to the presence of both nucleophilic and electrophilic sites (Scheme 1B). Importantly, the 1,3-relative position is crucial for inhibiting self-destructive intra- or intermolecular ring-opening (i.e. the 3-nucleophilic site attack on oxetane itself) due to high barriers. Thus, such orthogonality is beneficial to their stability. In contrast, the nucleophilic site is expected to react with an external polarized π bond (e.g., X = Y, Scheme 1B), which enables a better-positioned nucleophile (Y) to attack the oxetane and cyclize. Thus, a formal [3 + 2] annulation should be expected. Unlike the well-known SN2 reactivity of oxetanes with simple bond formation, this amphoteric reactivity would greatly enrich the chemistry of oxetanes with multiple bond formations and provide expedient access to various heterocycles. In contrast to the conventional approaches that require presynthesis of advanced intermediates (e.g., intramolecular ring-opening),8 the exploitation of such amphoteric reactivity in an intermolecular convergent manner from simple substrates would be more practically useful. Moreover, more activation modes could be envisioned in addition to oxetane activation. In 2015, Kleij and coworkers reported an example of cyclization between 3-aminooxetane and CO2 in 55% yield, which provided a pioneering precedent.10 However, a systematic study to fully reveal such amphoteric reactivity in a broad context remains unknown in the literature.Open in a separate windowScheme 1Typical oxetane reactivity and the new amphoteric reactivity.To test our hypothesis, we began with the commercially available 3-aminooxetanes 1a and 1b as the model substrates. Phenyl thioisocyanate 2a and CS2 were initially employed as reaction partners, as they both have a polarized C Created by potrace 1.16, written by Peter Selinger 2001-2019 S bond as well as a relatively strong sulfur nucleophilic motif. Moreover, the resulting desired products, iminothiazolidines and mercaptothiazolidines, are both heterocycles with important biological applications (Fig. 2).11 To our delight, simple mixing these two types of reactants in DCM resulted in spontaneous reactions at room temperature without any catalyst. The corresponding [3 + 2] annulation products iminothiazolidine 3a and mercaptothiazolidine 4a were both formed with excellent efficiency (Scheme 2). It is worth mentioning that catalyst-free ring-opening of an oxetane ring is rarely known, particularly for intermolecular reactions.6–9 In this case, the high efficiency is likely attributed to the suitable choice and perfect position of the in situ generated sulfur nucleophile.Open in a separate windowFig. 2Selected bioactive molecules containing iminothiazolidine and mercaptothiazolidine motifs.Open in a separate windowScheme 2Initial results between 3-aminooxetanes and thiocarbonyl compounds.The catalyst-free annulation protocol is general with respect to various 3-aminooxetanes and isothiocyanates. A range of iminothiazolidines and mercaptothiazolidines were synthesized with high efficiency under mild conditions (Scheme 3). Many of them were obtained in quantitative yield. Quaternary carbon centers could also be generated from 3-substituted 3-aminooxetanes (e.g., 3j). The structure of product 3b was unambiguously confirmed by X-ray crystallography.Open in a separate windowScheme 3Formal [3 + 2] annulation with isothiocyanates and CS2. Reaction conditions: 1 (0.3–0.4 mmol), 2 (1.1 equiv.) or CS2 (1.5 equiv.), DCM (2 mL), RT, 3 h for 3 and 36 h for 4. Yields are for the isolated products.With the initial success of thiocarbonyl partners, we next turned our attention to isocyanates, in which the carbonyl group serves as the [3 + 2] annulation motif. Compared with sulfur as the nucleophilic site in the above cases, the oxygen atom is less nucleophilic. As expected, initial tests of the reactivity by mixing 1b and 5a resulted in no desired annulation product 6a in the absence of a catalyst (Table 1, entry 1). Next, Brønsted acids, including TsOH and the super acid HNTf2, were examined as catalysts, but with no success (entries 2 and 3). We then resorted to various Lewis acids, particularly those oxophilic ones, in hope of activating the oxetane unit. Unfortunately, many of them still remained ineffective (e.g., ZnCl2, AuCl, and FeCl3). However, to our delight, further screening of stronger Lewis acids helped identify Sc(OTf)3, Zn(OTf)2, and In(OTf)3 to be effective at room temperature, leading to the desired iminooxazolidine product 6a in good yield (entries 7–9). Its structure was confirmed by X-ray crystallography. Nevertheless, aiming to search for a cheaper catalyst, we continued to optimize this reaction at a higher temperature using previous ineffective catalysts. Indeed, FeCl3 was found to be effective at 80 °C (61% yield, entry 10), while Brønsted acid TsOH remained ineffective at this temperature (entry 11). Notably, decreasing the loading of FeCl3 to 1 mol% led to a higher yield (89% yield, entry 12). However, further decreasing to 0.5 mol% resulted in slightly diminished efficiency (entry 13).Reaction conditions for annulation with isocyanatesa
EntryCatalystYieldb (%)
10
2TsOH·H2O0
3HNTf20
4ZnCl20
5AuCl0
6FeCl30
7Sc(OTf)374
8Zn(OTf)278
9In(OTf)390
10FeCl3c61
11TsOH·H2Oc0
12FeCl3c (1 mol%)89(84)d
13FeCl3c (0.5 mol%)85
Open in a separate windowaReaction scale: 1b (0.1 mmol), 5a (0.1 mmol), catalyst (10 mol%), toluene (1 mL).bYield based on analysis of the 1H NMR spectra of the crude reaction mixture using trichloroethylene as an internal reference. For all the entries, the urea product from simple amine addition to isocyanate 5a accounts for the mass balance.cRun at 80 °C.dIsolated yield.While there are multiple effective catalysts, FeCl3 was selected for the scope study in view of its low price. Various substituted 3-aminooxetanes and isocyanates were subjected to this annulation protocol (Scheme 4). The corresponding iminooxazolidine products were all obtained in good to excellent yields. Isocyanates containing an electron-donating or electron-withdrawing group were both suitable reaction partners. Remarkably, a 1.5 mmol scale reaction of 6a also worked efficiently.Open in a separate windowScheme 4Formal [3 + 2] annulation between 3-aminooxetanes and isocyanates. Reaction scale: 1 (0.3 mmol), 5 (0.3 mmol), FeCl3 (1 mol%), toluene (2 mL).Although (thio)isocyanates and CS2 have been successfully utilized in the formal [3 + 2] annulation with 3-aminooxetanes, these partners are relatively reactive. We were curious about whether the C Created by potrace 1.16, written by Peter Selinger 2001-2019 O bond in relatively inert molecules could react in a similar manner. For example, the C Created by potrace 1.16, written by Peter Selinger 2001-2019 O bond in CO2 is both thermodynamically and kinetically inert relative to typical organic carbonyl groups. However, as a cheap, abundant and green one-carbon source, CO2 has been a subject of persistent investigations owing to its versatility in various transformations leading to valuable materials.12 Specifically, if CO2 could be employed as a partner for the [3 + 2] annulation with 3-aminooxetanes, it would represent an attractive synthesis of oxazolidinones, a well-known heterocycle with applications in both organic synthesis and medicinal chemistry.13 In this context, we next studied the possibility of utilizing CO2 in our annulation.As expected, the reaction between 1b and CO2 at 1 atmospheric pressure did not proceed without a catalyst (Table 2, entry 1). Next, we examined representative Lewis acids, such as Sc(OTf)3, In(OTf)3 and FeCl3. Among them, Sc(OTf)3 exhibited the highest catalytic activity at room temperature (22% yield, entry 2). The reaction efficiency could be improved at 80 °C (65% yield, entry 6), but no further improvement could be made at a higher temperature or with other solvents. Next, we resorted to organic nitrogen bases, as they were known as effective activators of CO2.14 While Et3N and DABCO were completely ineffective for the reaction in MeCN at 80 °C, fortunately, TMG, TBD, and DBU were competent for the desired process (entries 7–11). Among them, DBU exhibited the best performance, leading to the desired product 7a in 89% yield (entry 11). It is worth noting that the polar solvent MeCN was found to be crucial for the base-catalyzed reactivity. Less polar solvents, such as toluene, DCE or THF, completely shut down the reaction. We believe that effective stabilization of certain polar intermediates involved here is critically beneficial to decreasing the reaction barrier. Finally, unlike the previous Lewis acid-catalyzed annulation with isocyanates, this base-catalyzed [3 + 2] annulation with CO2 proceeds via a different activation mode (i.e., to activate CO2 rather than oxetane). We believe that expansion of possible activation modes in this type of amphoteric reactivity will enrich the chemistry of oxetanes.Reaction conditions for annulation with CO2a
EntryCatalyst T Conv. (%)Yield (%)
1RT00
2Sc(OTf)3RT4822
3In(OTf)3RT339
4Zn(OTf)2RT70
5Sc(OTf)360 °C10061
6Sc(OTf)380 °C10065
7Et3N80 °C00
8DABCO80 °C50
9TMG80 °C7254
10TBD80 °C10088
11DBU80 °C10089
Open in a separate windowaReaction scale: 1b (0.1 mmol), CO2 (1 atm), solvent (0.5 mL). Yields based on analysis of the 1H NMR spectra of the crude reaction mixture using CH2Br2 as an internal standard.We next examined the scope of this CO2-fixation process. Unfortunately, at a larger scale (0.5 mmol), the same condition (entry 11, Table 2) could not lead to complete conversion within 12 h. Therefore, further optimization aiming to accelerate the reaction was performed. Indeed, a higher concentration (1.0 M) resulted in a higher rate without affecting the yield. As shown in Scheme 5, a wide variety of 3-aminooxetanes were smoothly converted to the corresponding oxazolidinones in high yields. Both electron-donating and electron-withdrawing substituents on the N-benzyl group did not affect the efficiency. Heterocycle-based N-benzyl or N-allylic substituents are all suitable substrates. However, for regular alkyl substituents, such as homobenzyl (7h) or n-butyl (7j), the stronger base catalyst TBD was needed to achieve good efficiency. Furthermore, this reaction can tolerate steric hindrance in the 3-position of the oxetane (7k), where a quaternary carbon center could be incorporated. However, increasing the size of the N-substituent, such as the secondary alkyl groups in 7i and 7l, did influence the reactivity, thus requiring a higher temperature (100 °C). This process exhibited good compatibility with diverse functional groups, such as ethers, pyridines, aryl halides, olefins, silyl-protected alcohols, and phthalimides. Finally, this protocol is also capable of generating various oxazolidinones embedded in a different structural context, such as chiral oxazaolidinone 7l, bis(oxazolidinone) 7m, and polyheterocycle-fused oxazolidinone 7o.Open in a separate windowScheme 5Formal [3 + 2] annulation between 3-aminooxetanes and CO2. aReaction scale: 1 (0.5 mmol), CO2 (1 atm), DBU (10 mol%), MeCN (0.5 mL). Isolated yield. bRun with TBD as the catalyst. cRun with DMF as solvent at 100 °C.In summary, 3-aminooxetanes have been systematically demonstrated, for the first time, as versatile 1,3-amphoteric molecules. They are a new addition to the limited family of amphoteric molecules. Though previously unappreciated, these molecules exhibited various advantages over the related known 1,3-amphotric molecules (e.g., α-aziridine aldehydes and amino isocyanates), including easy access and extraordinary stability. The perfect position of the nucleophilic nitrogen together with the orthogonal electrophilic carbon allowed them to participate in a diverse range of intermolecular formal [3 + 2] annulations with polarized π-systems, leading to rapid access to various valuable nitrogen heterocycles. Different types of polarized double bonds, from reactive (thio)isocyanates to inert CO2, all participated efficiently in these highly selective annulations with or without a suitable catalyst. Furthermore, the involvement of more functional groups in such amphoteric reactivity allowed manifold activation modes, thereby greatly enriching the reactivity of the already versatile oxetane unit to a new dimension. These reactions, proceeding in an intermolecular convergent manner from readily available substrates, provide expedient access to various valuable nitrogen heterocycles, thus being complementary to those traditional methods that either required multiple steps or less available substrates. More studies on the 1,3-amphoteric reactivity of 3-oxetanes, particularly those with other partners as well as their asymmetric variants, are ongoing in our laboratory.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号