首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1831篇
  免费   111篇
  国内免费   6篇
化学   1468篇
晶体学   15篇
力学   24篇
数学   87篇
物理学   354篇
  2023年   9篇
  2022年   7篇
  2021年   57篇
  2020年   47篇
  2019年   52篇
  2018年   24篇
  2017年   29篇
  2016年   70篇
  2015年   68篇
  2014年   74篇
  2013年   123篇
  2012年   166篇
  2011年   180篇
  2010年   110篇
  2009年   92篇
  2008年   130篇
  2007年   104篇
  2006年   93篇
  2005年   93篇
  2004年   87篇
  2003年   58篇
  2002年   68篇
  2001年   37篇
  2000年   26篇
  1999年   31篇
  1998年   18篇
  1997年   12篇
  1996年   12篇
  1995年   8篇
  1994年   11篇
  1993年   6篇
  1991年   5篇
  1990年   6篇
  1989年   4篇
  1988年   1篇
  1986年   1篇
  1985年   4篇
  1984年   1篇
  1983年   5篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1978年   3篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有1948条查询结果,搜索用时 15 毫秒
101.
Autophagy is a conserved lysosomal self-digestion process used for the breakdown of long-lived proteins and damaged organelles, and it is associated with a number of pathological processes, including cancer. Phospholipase D (PLD) isozymes are dysregulated in various cancers. Recently, we reported that PLD1 is a new regulator of autophagy and is a potential target for cancer therapy. Here, we investigated whether PLD2 is involved in the regulation of autophagy. A PLD2-specific inhibitor and siRNA directed against PLD2 were used to treat HT29 and HCT116 colorectal cancer cells, and both inhibition and genetic knockdown of PLD2 in these cells significantly induced autophagy, as demonstrated by the visualization of light chain 3 (LC3) puncta and autophagic vacuoles as well as by determining the LC3-II protein level. Furthermore, PLD2 inhibition promoted autophagic flux via the canonical Atg5-, Atg7- and AMPK-Ulk1-mediated pathways. Taken together, these results suggest that PLD2 might have a role in autophagy and that its inhibition might provide a new therapeutic basis for targeting autophagy.  相似文献   
102.
Electroluminescent (EL) properties of Ir(III) complex, [(2,4-diphenylquinoli-ne)]2Iridium picolinic acid N-oxide [(DPQ)2Ir(pic-N-O)] were investigated using PEDOT:PSS and reduced graphene oxide (rGO) as a hole transport layer for solution processable phosphorescent organic light-emitting diodes (PhOLEDs). High performance solution-processable PhOLED with PEDOT:PSS and (DPQ)2Ir(pic-N-O) (8 wt%) doped CBP:TPD:PBD (8:56:12) host emission layer were fabricated to give a high luminance efficiency (LE) of 26.9 cd/A, equivelent to an external quantum efficiency (EQE) of 14.2%. The corresponding PhOLED with rGO as a hole transport layer exhibited the maximum brightness and LE of 13540 cd/m2 and 16.8 cd/A, respectively. The utilization of the solution processable rGO thin films as the hole transport layer offered the great potential to the fabrication of solution processable PhOLEDs.  相似文献   
103.
In the present study, carbon-coated lithium iron phosphate (LiFePO4/C) is prepared directly by a polyol-assisted pyro-synthesis performed under reaction times of a few seconds in open-air conditions. The polyol solvent, tetraethylene glycol (TTEG), acts as a low-cost fuel to facilitate combustion and the released exothermic energy promotes the nucleation and growth processes of the olivine nanoparticles. In addition, phosphoric acid (used as the phosphorous source) acts as a catalyst to accelerate polyol carbonization. The structure analysis of the as-prepared LiFePO4/C using X-ray, neutron diffraction and 7Li NMR studies suggested the efficacy of the rapid technique to produce highly crystalline phase-pure olivine nanocrystals. The electron microscopy and particle-size distribution studies revealed that the average particle diameters lie below 100 nm and confirmed the presence of a surface carbon layer of 2–3 nm thickness. The thermal and elemental studies indicated that the carbon content in the sample was approximately 5 %. The prepared LiFePO4/C cathode delivered capacities of 162 mA h g-1 at 0.1 °C rates with impressive capacity retention for extended cycling. The polyol-assisted pyro-synthesis, which evades the use of external energy sources, is not only a straightforward, simple and timely approach but also offers opportunities for large-scale LiFePO4/C production.  相似文献   
104.
As a photocathode for CO2 reduction, zinc‐blende zinc telluride (ZnTe) was directly formed on a Zn/ZnO nanowire substrate by a simple dissolution–recrystallization mechanism without any surfactant. With the most negative conduction‐band edge among p‐type semiconductors, this new photocatalyst showed efficient and stable CO formation in photoelectrochemical CO2 reduction at ?0.2–?0.7 V versus RHE without a sacrificial reagent.  相似文献   
105.
To establish the structure–catalytic property relationships of heterogeneous catalysts, a detailed characterization of the three‐dimensional (3D) distribution of active sites on a single catalyst is essential. Single‐particle catalysis of a modular multilayer catalytic platform that consists of a solid silica core, a mesoporous silica shell, and uniformly distributed Pt nanoparticles sandwiched in between these layers is presented. The first 3D high‐resolution super‐localization imaging of single fluorescent molecules produced at active sites on the core‐shell model nanocatalysts is demonstrated. The 3D mapping is aided by the well‐defined geometry and a correlation study in scanning electron microscopy and total internal reflection fluorescence and scattering microscopy. This approach can be generalized to study other nano‐ and mesoscale structures.  相似文献   
106.
The composites comprising vertically aligned network of copper nanowires (CuNWs) in the presence of cellulose nanofibers were fabricated by using the freeze‐templating method and the effect of aspect ratio (A/R) of CuNWs on the thermal conductivity of epoxy composites was investigated. The thermal conductivity of epoxy composites increased to 0.79 W m?1 K?1 at 1.12 vol% of high A/R CuNWs loading, corresponding to the thermal conductivity enhancement of 365% as compared to the pure epoxy. The thermal conductivity of vertically aligned higher A/R CuNWs/epoxy, which is 38.5% and 51.9% higher than those of the lower A/R CuNWs and the randomly aligned CuNWs, respectively. The application of the epoxy composites in heat dissipation was demonstrated by the temperature changes of composites on a hot plate with the increase of heating time. These results indicate that the thermally conductive composites in this study could be applied for thermal dissipating materials in electronic devices.  相似文献   
107.
Phototheranostic nanoplatforms are of particular interest for cancer diagnosis and imaging‐guided therapy. Herein, we develop a supramolecular approach to fabricate a nanostructured phototheranostic agent through the direct self‐assembly of two water‐soluble phthalocyanine derivatives, PcS4 and PcN4. The nature of the molecular recognition between PcS4 and PcN4 facilitates the formation of nanostructure (PcS4‐PcN4) and consequently enables the fabrication of PcS4‐PcN4 with completely quenched fluorescence and reduced singlet oxygen generation, leading to the high photoacoustic and photothermal activity of PcS4‐PcN4. In vivo evaluations suggest that PcS4‐PcN4 could not only efficiently visualize a tumor with high contrast through whole‐body photoacoustic imaging but also enable excellent photothermal therapy for cancer.  相似文献   
108.
Chiral optical metamaterials with delicate structures are in high demand in various fields because of their strong light–matter interactions. Recently, a scalable strategy for the synthesis of chiral plasmonic nanoparticles (NPs) using amino acids and peptides has been reported. Reported herein, 3D chiral gold NPs were synthesized using dipeptide γ‐Glu‐Cys and Cys‐Gly and analyzed crystallographically. The γ‐Glu‐Cys‐directed NPs present a cube‐like outline with a protruding chiral wing. In comparison, the NPs synthesized with Cys‐Gly exhibited a rhombic dodecahedron‐like outline with curved edges and elliptical cavities on each face. Morphology analysis of intermediates indicated that γ‐Glu‐Cys generated an intermediate concave hexoctahedron morphology, while Cys‐Gly formed a concave rhombic dodecahedron. NPs synthesized with Cys‐Gly are named 432 helicoid V because of their unique morphology and growth pathway.  相似文献   
109.
Herein, we report the development of an 18F‐labeled, activity‐based small‐molecule probe targeting the cancer‐associated serine hydrolase NCEH1. We undertook a focused medicinal chemistry campaign to simultaneously preserve potent and specific NCEH1 labeling in live cells and animals, while permitting facile 18F radionuclide incorporation required for PET imaging. The resulting molecule, [18F]JW199, labels active NCEH1 in live cells at nanomolar concentrations and greater than 1000‐fold selectivity relative to other serine hydrolases. [18F]JW199 displays rapid, NCEH1‐dependent accumulation in mouse tissues. Finally, we demonstrate that [18F]JW199 labels aggressive cancer tumor cells in vivo, which uncovered localized NCEH1 activity at the leading edge of triple‐negative breast cancer tumors, suggesting roles for NCEH1 in tumor aggressiveness and metastasis.  相似文献   
110.
This study examined the in situ deposition behavior of silica-based layers on IN713 turbine blades during the operation of a 13 kgf-class gas turbine at a rotation speed of 20,000/min as well as its effect on the degradation of the metallic substrate. Tetraethylorthosilicate (TEOS) was mixed with the fuel (liquid petroleum gas, LPG) and burned to generate silica-based coating precursors for deposition from the flame. Two deposition conditions were adopted. For condition 1 (C1), the silicon-to-carbon ratio in the mixed fuel was set at 0.1 mol% for the first 5 min and at zero mol% for the final 95 min in a 100-min operation. For condition 2 (C2), the ratio was set at 0.005 mol% during the entire 100 min operation. The total TEOS feed was the same under both conditions. C1 resulted in a rather uniform and thicker (5-10 μm on the pressure side) porous silica-based coating on the blade than C2. The in situ deposited layer of C1 was well preserved on the blade and protected the underlying metallic substrate from oxidation during the entire 100 min operation. The layer on the C2 blades was ∼5 μm thick at the region near to root, but was too thin in the other areas on the blade to be protective. The early build-up of a porous layer to an effective thickness on the blades produced a thermal barrier toward the substrate as well as a diffusion barrier toward the oxidizing elements during operation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号