首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Chiral optical metamaterials with delicate structures are in high demand in various fields because of their strong light–matter interactions. Recently, a scalable strategy for the synthesis of chiral plasmonic nanoparticles (NPs) using amino acids and peptides has been reported. Reported herein, 3D chiral gold NPs were synthesized using dipeptide γ-Glu-Cys and Cys-Gly and analyzed crystallographically. The γ-Glu-Cys-directed NPs present a cube-like outline with a protruding chiral wing. In comparison, the NPs synthesized with Cys-Gly exhibited a rhombic dodecahedron-like outline with curved edges and elliptical cavities on each face. Morphology analysis of intermediates indicated that γ-Glu-Cys generated an intermediate concave hexoctahedron morphology, while Cys-Gly formed a concave rhombic dodecahedron. NPs synthesized with Cys-Gly are named 432 helicoid V because of their unique morphology and growth pathway.  相似文献   

2.
《Electroanalysis》2003,15(14):1177-1184
The metal binding properties of glutathione (GSH) and their fragments γ‐Glu‐Cys and Cys‐Gly are of biological and environmental interest. In this work a differential pulse polarographic study of the Zn2+/γ‐Glu‐Cys and Zn2+/Cys‐Gly systems was carried out for a better understanding of the results obtained in previous studies on the Zn2+‐GSH system. In the case of γ‐Glu‐Cys, complexation with Zn2+ was not detected. In the case of Cys‐Gly, the parallel analysis, by multivariate curve resolution with alternating least squares, of data from the titration of peptide with metal and of metal with peptide suggested the presence of two types of bound Zn2+. This could be attributed to Zn2+ strongly bound to two sulfur atoms of two peptides, to form a complex of 1 : 2 stoichiometry, and to Zn2+ weakly bound to carboxylate and/or amino groups.  相似文献   

3.
The γ‐glutamyl transpeptidase (GGT) enzyme plays a central role in glutathione homeostasis. Direct detection of GGT activity could provide critical information for the diagnosis of several pathologies. We propose a new molecular probe, γ‐Glu‐[1‐13C]Gly, for monitoring GGT activity in vivo by hyperpolarized (HP) 13C magnetic resonance (MR). The properties of γ‐Glu‐[1‐13C]Gly are suitable for in vivo HP 13C metabolic analysis since the chemical shift between γ‐Glu‐[1‐13C]Gly and its metabolic product, [1‐13C]Gly, is large (4.3 ppm) and the T1 of both compounds is relatively long (30 s and 45 s, respectively, in H2O at 9.4 T). We also demonstrate that γ‐Glu‐[1‐13C]Gly is highly sensitive to in vivo modulation of GGT activity induced by the inhibitor acivicin.  相似文献   

4.
Linear and star‐like amphiphilic diblock copolymers were synthesized by the ring‐opening polymerization of ε‐caprolactone and γ‐2‐[2‐(2‐methoxyethoxy)ethoxy]ethoxy‐ε‐caprolactone monomers using zinc undecylenate as a catalyst. These polymers have potential applications as micellar drug delivery vehicles, therefore the properties of the linear and 4‐arm star‐like structures were examined in terms of their molecular weight, viscosity, thermodynamic stability, size, morphology, and drug loading capacity. Both the star‐like and linear block copolymers showed good thermodynamic stability and degradability. However, the star‐like polymers were shown to have increased stability at lower concentrations with a critical micelle concentration (CMC) of 5.62 × 10?4 g L?1, which is less than half the concentration of linear polymer needed to form micelles. The star‐like polymeric micelles showed smaller sizes when compared with their linear counterparts and a higher drug loading capacity of doxorubicin, making them better suited for drug delivery purposes. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3601–3608  相似文献   

5.
A novel amphoteric poly(amino acid) is synthesized by grafting a cationic amino acid (L ‐Arg) to γ‐PGA to prepare charged NPs. γ‐PGA‐Arg NPs can be prepared by the self‐complexation of a single polymer by intra‐/inter‐molecular electrostatic interactions when the polymer is dispersed in water. The size and surface charge of the NPs can be regulated by the grafting degree of Arg (41, 56, and 83%). The smallest NPs are obtained at 56% grafting degree of the γ‐PGA‐Arg copolymer. The 56 and 83% grafting degree NPs are stable for at least 1 week. Depending on their surface charge, these NPs can selectively adsorb anionically or cationically charged proteins.

  相似文献   


6.
Synthesis of fully conjugated cyclophanes containing large‐size polycyclic aromatics is challenging. Now, three benzidine‐linked, hexa‐peri‐hexabenzocoronene (superbenzene)‐based ortho‐, para‐, and meta‐cyclophanes are synthesized through intermolecular Yamamoto coupling reaction of structurally pre‐organized precursors. Subsequent oxidative dehydrogenation gave the corresponding quinoidal benzidine‐linked cyclophanes. Their geometries were confirmed by X‐ray crystallographic analysis and their electronic properties were investigated by electronic absorption, cyclic voltammetry, and DFT calculations. The quinoidal benzidine‐linked cyclophanes show thermally populated paramagnetic activity with a relatively large singlet‐triplet energy gap. Two enantiomers for the ortho‐cyclophanes ( 1‐NH and 1‐N ) were isolated and their chiral figure‐of‐eight macrocyclic structures were identified. The cage‐like cyclophanes 2‐NH and 3‐NH with concave surface can selectively encapsulate fullerene C70.  相似文献   

7.
An efficient method for the preparation of optically active derivatives of γ‐amino‐butenoic acids and their cyclic derivatives, 2‐amino‐pyrrolin‐4‐ones, from α‐amino acids is described. Partial racemization accompanies the formation of initial unsaturated γ‐amino‐β‐hydroxy esters 5–8 , as determined by chiral HPLC.  相似文献   

8.
Three newly synthesized chiral selectors, namely, 2IO‐, 3IO‐, and 6IO‐carboxymethyl‐γ‐cyclodextrin, native γ‐cyclodextrin, and commercially available carboxymethylated γ‐cyclodextrin with degree of substitution of 3–6 were used as additives in a background electrolyte composed of phosphate buffer at 20 mmol/L concentration and pH 2.5. This system was used for the analysis of several biologically significant low‐molecular‐mass chiral compounds by capillary electrophoresis. The results confirmed that the position of carboxymethyl group influences the enantioseparation efficiency of all the studied analytes. The 2IO‐ and 3IO‐ regioisomers provide a significantly better resolution than native γ‐cyclodextrin, while the 6IO‐regioisomer gives only a slightly better enantioseparation than native γ‐cyclodextrin. The application of γ‐cyclodextrin possessing higher number of carboxymethyl groups led to the best resolution for the majority of the compounds analyzed.  相似文献   

9.
Herein, we describe an unprecedented cascade reaction to β‐stereogenic γ‐lactams involving Pd(II)‐catalyzed enantioselective aliphatic methylene C(sp3)?H alkenylation–aza‐Wacker cyclization through syn‐aminopalladation. Readily available 3,3′‐substituted BINOLs are used as chiral ligands, providing the corresponding γ‐lactams with broad scope and high enantioselectivities (up to 98 % ee).  相似文献   

10.
The first phosphine‐catalyzed enantioselective γ‐addition with prochiral nucleophiles and 2,3‐butadienoates as the reaction partners has been developed. Both 3‐alkyl‐ and 3‐aryl‐substituted oxindoles could be employed in this process, which is catalyzed by a chiral phosphine that is derived from an amino acid, thus affording oxindoles that bear an all‐carbon quaternary center at the 3‐position in high yields and excellent enantioselectivity. The synthetic value of these γ‐addition products was demonstrated by the formal total synthesis of two natural products and by the preparation of biologically relevant molecules and structural scaffolds.  相似文献   

11.
We present the first results of electron magnetic resonance (EMR) and Mössbauer spectroscopy studies of γ‐Fe2O3 nanoparticles (NPs) incorporated into liquid‐crystalline, second‐generation dendrimers. The mean size of NPs formed in the dendrimers was around 2.5 nm. A temperature‐driven transition from superparamagnetic to ferrimagnetic resonance was observed for the sample. Low‐temperature blocking of the NP magnetic moments has been clearly evidenced in the integrated EMR line intensity and the blocking temperature was about 60 K. The physical parameters of magnetic NPs (magnetic moment, effective magnetic anisotropy) have been determined from analyses of the EMR data. The effective magnetic anisotropy constant is enhanced relative to bulk γ‐Fe2O3 and this enhanced value is associated with the influence of the surface and shape effects. The angular dependence of the EMR signal position for the field‐freezing sample from liquid‐crystalline phase showed that NPs possessed uniaxial anisotropy, in contrast to bulk γ‐Fe2O3. Mössbauer spectroscopy determined that fabricated NPs consisted of an α‐Fe core and a γ‐Fe2O3 shell.  相似文献   

12.
An investigation of the optical and magnetic properties of a unique hydrogen‐linked conjugate nanostructure, comprised of superparamagnetic γ‐Fe2O3 nanoparticles (NPs) and near‐infrared PbSe nanocrystal quantum dot (NQD) chromophores, is reported. The results show retention of the NQDs’ emission quantum efficiency and radiative lifetime, and only a small red shift of its band energy, upon conjugation to the dielectric surroundings of γ‐Fe2O3 NPs. The study also shows the sustainability of the superparamagnetism of the NPs after conjugation, with only a slight decrease of the ferromagnetic–superparamagnetic transition temperature with respect to that of the individual NPs. Thus, the conjugate nanostructure can be considered as a useful medical platform when PbSe NQDs act as fluorescent tags, while the γ‐Fe2O3 NPs are used as a vehicle driven by an external magnetic field for targeted delivery of tags or drugs.  相似文献   

13.
β‐Substituted chiral γ‐aminobutyric acids feature important biological activities and are valuable intermediates for the synthesis of pharmaceuticals. Herein, an efficient catalytic enantioselective approach for the synthesis of β‐substituted γ‐aminobutyric acid derivatives through visible‐light‐induced photocatalyst‐free asymmetric radical conjugate additions is reported. Various β‐substituted γ‐aminobutyric acid analogues, including previously inaccessible derivatives containing fluorinated quaternary stereocenters, were obtained in good yields (42–89 %) and with excellent enantioselectivity (90–97 % ee). Synthetically valuable applications were demonstrated by providing straightforward synthetic access to the pharmaceuticals or related bioactive compounds (S)‐pregabalin, (R)‐baclofen, (R)‐rolipram, and (S)‐nebracetam.  相似文献   

14.
An asymmetric doubly vinylogous Michael addition (DVMA) of α,β‐unsaturated γ‐butyrolactams to sterically congested β‐substituted cyclic dienones with high site‐, diastereo‐, and enantioselectivity has been achieved. An unprecedented DVMA/vinylogous Michael addition/isomerization cascade reaction affords chiral fused tricyclic γ‐lactams with four newly formed stereocenters.  相似文献   

15.
Copper(II) hypophosphite has been shown to exist as several polymorphs. The crystal structures of monoclinic α‐, ortho­rhombic β‐ and ortho­rhombic γ‐Cu(H2PO2)2 have been determined at different temperatures. The geometry of the hypophosphite anion in all three polymorphs is very close to the idealized one, with point symmetry mm2. Despite having different space groups, the structures of the α‐ and β‐polymorphs are very similar. The polymeric layers formed by the Cu atoms and the hypophosphite ions, which are identical in the α‐ and β‐polymorphs, stack in the third dimension in different ways. Each hypophosphite anion is coordinated to three Cu atoms. On cooling, a minimum amount of contraction was observed in the direction normal to the layers. The structure of the polymeric layers in the γ‐­polymorph is quite different. There are two symmetry‐independent hypophosphite anions; the first is coordinated to two Cu atoms, while the second is coordinated to four Cu atoms. In all three polymorphs, the Cu atoms are coordinated by six O atoms of six hypophosphite anions, forming tetragonal bipyramids; in the α‐ and β‐polymorphs, there are four short and two long Cu—O distances, while in the γ‐polymorph, there are four long and two short Cu—O distances.  相似文献   

16.
Facile, alternative synthetic routes to 6 , (R)‐6 , and (S)‐6 ‐3‐benzyl‐N‐(2,6‐dimethylphenyl)‐1,3‐oxazolidine‐4‐carboxamides ( 6 ), a chiral oxazolidine derivative of tocainide, are reported. The synthetic routes described herein also afforded 11 ‐, (R)‐11 ‐, and 12 , which present the imidazolidin‐4‐one core and belong to a class of compounds interesting for their biological activities. All the final compounds and intermediates were fully characterized. Enantiomeric excesses of homochiral 6 and 11 were determined by capillary electrophoresis analysis using 2‐hydroxypropyl‐β‐cyclodextrin or highly sulfated γ‐cyclodextrin as chiral selectors. J. Heterocyclic Chem., (2010)  相似文献   

17.
A new mesoporous organic–inorganic nanocomposite was formulated and then used as stabilizer and support for the preparation of palladium nanoparticles (Pd NPs). The properties and structure of Pd NPs immobilized on prepared 1,4‐diazabicyclo[2.2.2]octane (DABCO) chemically tagged on mesoporous γ‐Fe2O3@hydroxyapatite (ionic modified (IM)‐MHA) were investigated using various techniques. The synergistic effects of the combined properties of MHA, DABCO and Pd NPs, and catalytic activity of γ‐Fe2O3@hydroxyapatite‐DABCO‐Pd (IM‐MHA‐Pd) were investigated for the Heck cross‐coupling reaction in aqueous media. The appropriate surface area and pore size of mesoporous IM‐MHA nanocomposite can provide a favourable hard template for immobilization of Pd NPs. The loading level of Pd in the nanocatalyst was 0.51 mmol g?1. DABCO bonded to the MHA surface acts as a Pd NP stabilizer and can also lead to colloidal stability of the nanocomposite in aqueous solution. The results reveal that IM‐MHA‐Pd is highly efficient for coupling reactions of a wide range of aryl halides with olefins under green conditions. The superparamagnetic nature of the nanocomposite means that the catalyst to be easily separated from solution through magnetic decantation, and the catalytic activity of the recycled IM‐MHA‐Pd showed almost no appreciable loss even after six consecutive runs.  相似文献   

18.
An enantioselective three‐component radical reaction of quinolines or pyridines with enamides and α‐bromo carbonyl compounds by dual photoredox and chiral Brønsted acid catalysis is presented. A range of valuable chiral γ‐amino‐acid derivatives are accessible in high chemo‐, regio‐, and enantioselectivity from simple, readily available starting materials under mild reaction conditions. Using the same strategy, the asymmetric synthesis of 1,2‐diamine derivatives is also reported.  相似文献   

19.
Enantiomers of Tröger's base were separated by capillary electrophoresis using 2IO‐, 3IO‐, and 6IO‐carboxymethyl‐α‐, β‐, and γ‐cyclodextrin and native α‐, β‐, and γ‐cyclodextrin as chiral additives at 0–12 mmol/L for β‐cyclodextrin and its derivatives and 0–50 mmol/L for α‐ and γ‐cyclodextrins and their derivatives in a background electrolyte composed of sodium phosphate buffer at 20 mmol/L concentration and pH 2.5. Apparent stability constants of all cyclodextrin–Tröger's base complexes were calculated based on capillary electrophoresis data. The obtained results showed that the position of the carboxymethyl group as well as the cavity size of the individual cyclodextrin significantly influences the apparent stability constants of cyclodextrin–Tröger's base complexes.  相似文献   

20.
Well‐dispersed ammonium aluminum carbonate hydroxide (NH4‐Dw) and γ‐AlOOH nanostructures with controlled morphologies have been synthesized by employing an ionic‐liquid‐assisted hydrothermal process. The basic strategies that were used in this work were: 1) A controllable phase transition from NH4‐Dw to γ‐AlOOH could be realized by increasing the reaction temperature and 2) the morphological evolution of NH4‐Dw and γ‐AlOOH nanostructures could be influenced by the concentration of the ionic liquid. Based on these experimental results, the main objective of this work was to clarify the effect models of the ionic liquids on the synthesis of NH4‐Dw and γ‐AlOOH nanostructures, which could be divided into cationic‐ or anionic‐dominant effect models, as determined by the different surface structures of the targets. Specifically, under the cationic‐dominant regime, the ionic liquids mainly showed dispersion effects for the NH4‐Dw nanostructures, whereas the anionic‐dominant model could induce the self‐assembly of the γ‐AlOOH particles to form hierarchical structures. Under the guidance of the proposed models, the effect of the ionic liquids would be optimized by an appropriate choice of cations or anions, as well as by considering the different effect models with the substrate surface. We expect that such effect models between ionic liquids and the target products will be helpful for understanding and designing rational ionic liquids that contain specific functional groups, thus open up new opportunities for the synthesis of inorganic nanomaterials with new morphologies and improved properties. In addition, these as‐prepared NH4‐Dw and γ‐AlOOH nanostructures were converted into porous γ‐Al2O3 nanostructures by thermal decomposition, whilst preserving the same morphology. By using HRTEM and nitrogen‐adsorption analysis, the obtained γ‐Al2O3 samples were found to have excellent porous properties and, hence, may have applications in catalysis and adsorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号