首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   2篇
  国内免费   2篇
化学   72篇
数学   8篇
物理学   10篇
  2020年   1篇
  2019年   4篇
  2018年   3篇
  2017年   1篇
  2016年   4篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   6篇
  2011年   1篇
  2009年   1篇
  2008年   5篇
  2007年   8篇
  2006年   6篇
  2005年   7篇
  2004年   5篇
  2003年   6篇
  2002年   2篇
  2001年   8篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1990年   1篇
  1989年   2篇
  1983年   1篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1973年   2篇
  1970年   1篇
排序方式: 共有90条查询结果,搜索用时 15 毫秒
11.
[formula: see text] A simple synthesis of heterocyclic thiosulfonates containing indole, indoline, benzoimidazole, and quinoxaline rings is described. The synthesis of these thiosulfonates involves the preparation of the appropriately substituted thiols followed by sulfonylation to give thiosulfonates. The corresponding thiols were prepared in a simple and efficient manner by using a thiocyanation reaction either prior to heterocycle ring formation or after heterocycle ring formation. These thiosulfonates were coupled successfully to the 5,6-dihydropyran-2-one ring to give products that showed excellent HIV protease activity.  相似文献   
12.
The effect of high energy neutron irradiation (E>1 MeV) on the superconducting transition temperature, Tc, of the A-15 compound Mo3Os is reported. Tc was found to decrease with increasing neutron dose, but at a rate considerably less than observed in other A-15 compounds composed of non-transition metals. The results lend support to the idea that the effect of ordering on Tc is smaller for A-15 compounds composed only of transition metals than those composed of transition and non-transition metals.  相似文献   
13.
14.
Ye X  Rubakhin SS  Sweedler JV 《The Analyst》2008,133(4):423-433
Nitric oxide (NO) is endogenously generated by nitric oxide synthase (NOS) enzymes and is involved in a surprisingly wide range of biological functions. As efforts are made to elucidate the regulatory mechanisms of NOS expression and function, there is increasing interest in following NOS activity directly by monitoring NO production. Additionally, spatial and temporal measurements of NO are important for understanding its function and metabolism. In this work, developments in technology enabling NO detection in biological systems are reviewed. Measuring NO at single cell levels is important as NOS is heterogeneously distributed; however, such measurements are difficult as physiological NO levels are in the low nanomolar to low micromolar range. Here, three categories of analytical techniques enabling NO detection at single cell levels are highlighted: fluorescence microscopy, capillary electrophoresis with laser induced fluorescence detection, and electrochemistry. For each, the basic principles, performance, applications, figures of merits and limitations are presented in terms of single cell NO detection.  相似文献   
15.
Interfacing nanoscale elements into a microfluidic device enables a new range of fluidic manipulations. Nanocapillary array membranes (NCAMs), consisting of thin (5 microm < d < 20 microm) membranes containing arrays of nanometer diameter (10 nm < a < 500 nm) pores, are a convenient method of interfacing vertically separated microchannels in microfluidic devices that allow the external control of analyte transport between microfluidic channels. To add functionality to these nanopores beyond simple fluid transport, here we incorporate an antibody-based molecular recognition element onto the pore surface that allows selective capture, purification, and release of specific analytes from a mixture. The pores are fabricated by electroless plating of gold into the nanopores of an NCAM (Au-NCAM). An antibody is then immobilized on the Au-NCAM via gold-thiol chemistry as a thiolated fragment of antigen-binding (Fab') prepared by direct digestion of the antibody followed by reduction of the disulfide linkage on the hinge region. The successful immobilization and biological activity of the resultant Fab' through this protocol is verified on planar gold by fluorescence microscopy, scanning electron microscopy, and atomic force microscopy. Selective capture and release of human insulin is verified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The relative mass spectral peak intensities for insulin versus nonantigenic peptides increase more than 20-fold after passing through the Fab'-Au-NCAM relative to the control Au-NCAM. The affinity-tagged Au-NCAM can be incorporated into microfluidic devices to allow the concentration, capture, and characterization of analytes in complex mixtures with high specificity.  相似文献   
16.
A cw high efficient Ho:YAI03 laser pumped by 1.91 μm diode-pumped Tm:YLF laser at room temperature is realized. The maximum output power reaches 8.5 W when the incident pump power is 15.6 W. The slope efficiency is 63.7%, and the Tm:YLF to Ho:YAP optical conversion efficiency is 54.5%. The laser wavelength is 2118.3nm when the transmission of output coupler is 30%. The beam quality factor is M2 -1.39 measured by the traveling knife-edge method.  相似文献   
17.
18.
Lipids have diverse functions in the nervous system, but the study of their anatomical distributions in the intact brain is rather difficult using conventional methodologies. Here we demonstrate the application of high resolution time-of-flight (ToF) secondary ion mass spectrometry (SIMS) to image various lipid components and cholesterol across an entire brain section prepared from an adult zebra finch (Taeniopygia guttata), with a spatial resolution of 2.3 μm, resulting in the formation of 11.5 megapixel chemical images. The zebra finch is a songbird in which specific neural and developmental functions have been ascribed to discrete “song control nuclei” of the forebrain. We have observed a relative increase of palmitic acid C16:0 and oleic acid C18:1 in song control nuclei versus the surrounding tissue, while phosphate (PO3), representative of phospholipids, was lower in these regions. Cholesterol was present at a high level only in the white matter of the optic tectum. More diffuse distributions were observed for stearic, arachidonic, linolenic, and palmitoleic acids. The presented results illustrate that SIMS imaging is a useful approach for assessing changes in lipid content during song circuit development and song learning.  相似文献   
19.
A Pb(ii)-specific DNAzyme has been successfully incorporated into Au-coated polycarbonate track-etched (PCTE) nanocapillary array membranes (NCAMs) by thiol-gold immobilization. Incorporation of the DNAzyme into the membrane provides a substrate-bound sensor using a novel internal control methodology for fluorescence-based detection of Pb(ii). A non-cleavable substrate strand, identical to the cleavable DNAzyme substrate strand except the RNA-base is replaced by the corresponding DNA-base, is used for ratiometric comparison of intensities. The cleavable substrate strand is labeled with fluorescein, and the non-cleavable strand is labeled with a red fluorophore (Cy5 or Alexa 546) for detection after release from the membrane surface. This internal standard based ratiometric method allows for real-time monitoring of Pb(ii)-induced cleavage, as well as standardizing variations in substrate size, solution detection volume, and monolayer density. The result is a Pb(ii)-sensing structure that can be stored in a prepared state for 30 days, regenerated after reaction, and detect Pb(ii) concentrations as low as 17 nM (3.5 ppb).  相似文献   
20.
The design and fabrication of a multilayered polymer micro-nanofluidic chip is described that consists of poly(methylmethacrylate) (PMMA) layers that contain microfluidic channels separated in the vertical direction by polycarbonate (PC) membranes that incorporate an array of nanometre diameter cylindrical pores. The materials are optically transparent to allow inspection of the fluids within the channels in the near UV and visible spectrum. The design architecture enables nanofluidic interconnections to be placed in the vertical direction between microfluidic channels. Such an architecture allows microchannel separations within the chip, as well as allowing unique operations that utilize nanocapillary interconnects: the separation of analytes based on molecular size, channel isolation, enhanced mixing, and sample concentration. Device fabrication is made possible by a transfer process of labile membranes and the development of a contact printing method for a thermally curable epoxy based adhesive. This adhesive is shown to have bond strengths that prevent leakage and delamination and channel rupture tests exceed 6 atm (0.6 MPa) under applied pressure. Channels 100 microm in width and 20 microm in depth are contact printed without the adhesive entering the microchannel. The chip is characterized in terms of resistivity measurements along the microfluidic channels, electroosmotic flow (EOF) measurements at different pH values and laser-induced-fluorescence (LIF) detection of green-fluorescent protein (GFP) plugs injected across the nanocapillary membrane and into a microfluidic channel. The results indicate that the mixed polymer micro-nanofluidic multilayer chip has electrical characteristics needed for use in microanalytical systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号