首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1215篇
  免费   84篇
  国内免费   28篇
化学   923篇
晶体学   5篇
力学   64篇
数学   155篇
物理学   180篇
  2024年   2篇
  2023年   6篇
  2022年   22篇
  2021年   51篇
  2020年   83篇
  2019年   81篇
  2018年   102篇
  2017年   63篇
  2016年   108篇
  2015年   73篇
  2014年   99篇
  2013年   161篇
  2012年   108篇
  2011年   84篇
  2010年   64篇
  2009年   56篇
  2008年   49篇
  2007年   35篇
  2006年   23篇
  2005年   12篇
  2004年   8篇
  2003年   7篇
  2002年   1篇
  2001年   6篇
  2000年   2篇
  1997年   2篇
  1994年   1篇
  1993年   2篇
  1989年   2篇
  1985年   2篇
  1981年   1篇
  1980年   2篇
  1978年   4篇
  1977年   2篇
  1975年   1篇
  1974年   2篇
排序方式: 共有1327条查询结果,搜索用时 15 毫秒
81.
In situ generated copper acetylides react with isocyanates and oxiranes to form a decent range of morpholine derivatives. The reactions proceeded with acceptable yields and excellent regioselectivity. The presence of oxygen and moisture completely inhibited the reaction. The scope of the reaction is wide and the reactions involve consecutive C–C, C–N, and C–O bond formations.  相似文献   
82.
In this paper, a novel series of 2-(4-((1-aryl-1H-1,2,3-triazol-4-yl)methoxy)phenyl)2-(2-oxoazetidin-1-yl)acetamide derivatives are synthesized in two steps. The first step involved Ugi multicomponent reaction of β-alanine, o-(propargyl)benzaldehyde and isocyanide derivatives. The product of this step, underwent a click 1,3-dipolar cycloaddition reaction with benzyl azide derivatives. The 2-(4-((1-aryl-1H-1,2,3-triazol-4-yl)methoxy)phenyl)2-(2-oxoazetidin-1-yl)acetamide product was characterized and their antibacterial activities were evaluated against various G-positive (Staphylococcus aureus and Bacillus subtilis) and G-negative (Pseudomonas aeruginosa and Escherichia coli) bacteria, using minimal inhibition concentration. The compounds showed very good antimicrobial activity and a number of products have been more active than ciprofloxacin.  相似文献   
83.
In this study, an available and inexpensive graphite substrate, was easily modified with Ni/Cr nanoparticles via electrodeposition technique in a very short time (3 min) and used as an electrocatalyst for glucose oxidation in alkaline solution. Graphite electrode modified with Ni/Cr nanoparticles demonstrated an outstanding electrocatalytic performance to glucose oxidation in comparison to examined Ni‐based electrodes or even different materials in other reports. It is noteworthy to mention that adding a little Cr led to a synergistic effect with Ni; accordingly, the presence of Cr not only resulted in a greater adsorption of glucose molecules by chromium oxide but also boosted conductivity of the nickel oxide because of the enhancement of Ni(III) amount. The electrochemical studies were performed by cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The morphology and structure of catalyst layer was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray diffraction (XRD) and energy dispersive x‐ray spectroscopy (EDS). The linear range of the electrode by cyclic voltammetry was between 2–31 mM with a high sensitivity of 2094 μA cm?2 mM?1. The repeatability and reproducibility of the proposed electrode was examined in glucose solution which were 0.3 % and 4.7 %, respectively. According to the low cost, ease and fast preparation, good repeatability and high sensitivity, this electrode can be a good candidate for nonenzymatic glucose oxidation.  相似文献   
84.

Pyrolysis is a commonly used method for the recovery of used lubricating oil (ULO), which should be kinetically improved by a catalyst, due to its high level of energy consumption. In this research, the catalytic effects of carbon nanotube (CNT) and graphene nanoplatelets on the pyrolysis of ULO were studied through thermogravimetric analysis. First, the kinetic parameters of ULO pyrolysis including activation energy were calculated to be 170.12 and 167.01 kJ mol?1 by FWO and KAS methods, respectively. Then, the catalytic effects of CNT and graphene nanoplatelets on pyrolysis kinetics were studied. While CNT had a negligible effect on the pyrolysis process, graphene nanoplatelets significantly reduced the temperature of maximum conversion during pyrolysis from 400 to 350 °C, due to high thermal conductivity and homogenous heat transfer in the pyrolysis process. On the other hand, graphene nanoplatelets maximized the rate of conversion of highly volatile components at lower temperatures (<?100 °C), which was mainly due to the high affinity of these components toward graphene nanoplatelets and also the effect of nanoplatelets’ edges which have free tails and can bond with other molecules. Moreover, graphene nanoplatelets decreased the activation energy of the conversion to 154.48 and 152.13 kJ mol?1 by FWO and KAS methods, respectively.

  相似文献   
85.
Journal of Thermal Analysis and Calorimetry - Due to global concerns about the emissions, limited hydrocarbon fuel resources and high fuel prices, a lot of researches have been done to improve the...  相似文献   
86.
Journal of Thermal Analysis and Calorimetry - High interstitial fluid pressure in the tumor is among the most important barriers to drug delivery. The use of the static magnetic field is one of the...  相似文献   
87.
88.
89.
Gas sensing is one of the most promising applications for graphene. Using molecular dynamics simulation method, adsorption isotherm of xenon (Xe) gas on defected and perfect graphene is studied in order to investigate sensing properties of graphene for Xe gas. In this method, first generation of Brenner many-body potential is used to simulate the interaction of carbon–carbon (C) atoms in graphene, and Lennard–Jones two-body potential is used to simulate interaction of Xe–Xe and Xe–C atoms. In the simulated systems, adsorption coverage, radial distribution function, heat of adsorption, binding energy and specific heat capacity at constant volume are calculated for several temperatures between 90 K and 130 K, and various pressures. It was found that both of the defected and perfect graphene could be introduced as very good candidates for adsorption of Xe gas.  相似文献   
90.
Effluents of a large variety of industries usually contain important quantities of synthetic organic compounds. The discharge of these compounds in the environment causes considerable non-aesthetic pollution and serious health risk factors. Since conventional wastewater treatment plants cannot degrade the majority of these pollutants, powerful methods for the decontamination of dye wastewaters have received increasing attention over the past decade. In this work, fundamentals and main applications of photoelectrocatalysis as one of the most powerful and recent progresses of emerging photoassisted electrochemical treatments with UV irradiation are studied. The effect of various effective factors such as photoanode type, light source and its intensity, pH solution value, type and concentration of supporting electrolyte, type of cathode electrode, to be moving of photoanode or solution, thicknesses of semiconductor film on the electrode surface, and applied potential on the destruction of pollutants is described. Furthermore, various methods used for TiO2 modification are mentioned. Also, application of photocatalysts except semiconductors is presented for photoelectrocatalytic aims. Finally, application of photoelectrocatalysis in determination of materials as a new method is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号