首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18477篇
  免费   759篇
  国内免费   51篇
化学   12116篇
晶体学   295篇
力学   594篇
综合类   1篇
数学   1432篇
物理学   4849篇
  2023年   197篇
  2022年   340篇
  2021年   479篇
  2020年   550篇
  2019年   596篇
  2018年   584篇
  2017年   540篇
  2016年   776篇
  2015年   566篇
  2014年   883篇
  2013年   1474篇
  2012年   1383篇
  2011年   1440篇
  2010年   929篇
  2009年   738篇
  2008年   903篇
  2007年   897篇
  2006年   720篇
  2005年   616篇
  2004年   479篇
  2003年   428篇
  2002年   327篇
  2001年   226篇
  2000年   191篇
  1999年   150篇
  1998年   103篇
  1997年   145篇
  1996年   151篇
  1995年   113篇
  1994年   140篇
  1993年   167篇
  1992年   166篇
  1991年   121篇
  1990年   112篇
  1989年   114篇
  1988年   80篇
  1987年   83篇
  1986年   77篇
  1985年   93篇
  1984年   88篇
  1983年   83篇
  1982年   84篇
  1981年   87篇
  1980年   82篇
  1979年   91篇
  1978年   74篇
  1977年   87篇
  1976年   65篇
  1975年   58篇
  1973年   56篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
991.
The voluminous utilization and application of plate and frame heat exchangers (PFHE) in many industries has accelerated the consumer and designer both to optimize exchanger total cost. Over the last few years, several old and new generation algorithms were employed and exploited to optimize PFHE cost. This study explores the application and performance of three new-generation algorithms Big Bang-Big Crunch (BBBC), Grey Wolf Optimizer (GWO), and Water Evaporation Optimization (WEO) in designing optimally PFHE. Besides, this study also compares the performance of three well-established old generations algorithms namely genetic algorithm (genetics and natural selection), particle swarm optimization (animals behaviour), and differential evolution (population-based) with the above three new algorithms in the optimization of PFHE.Seven design factors are chosen for PFHE optimization: exchanger length on hot and cold sides, height and thickness of fin, length of the fin-strip, fin frequency, and the number of hot side layers. The applicability of the suggested algorithms is assessed using a case study based on published research. Though DE performs the best in this study of design optimization concerning total cost and computational time, the three new-generation meta-heuristic algorithms BBBC, GWO, and WEO also provide the novel scope of application in heat exchanger design optimization and successfully finding the cost of the heat exchanger. According to this study, capital costs increase by 19.5% for BBBC, 24% for GWO, and 7.6% for GWO, but operational costs fall by 9.5% for BBBC and GWO when compared to the best performing algorithm (DE). On the other hand, WEO shows an increase of 32.6% in operational costs. Aside from that, a full analysis of the computing time for each algorithm is also provided. The DE has the quickest run time of 0.09 ?s, while the PSO takes the longest at 33.97 ?s. The rest of the algorithms have nearly identical values. As a result, a good comparison is established in this study, offering an excellent platform for designers and customers to make selections. Additionally, the three new generations algorithms mentioned here were not used earlier for optimization of PFHE and the comparative study illustrates that each of them possesses eat potential for cost optimization and also solving other complex problems.  相似文献   
992.
Uracil mustard belongs to the nitrogen mustard family and is primarily used in anticancer drugs. The research that follows, investigates many quantum chemical features such as the computation of global minimum energies with no negative wavenumber values using the Density Functional Theory (DFT) with Becke three functional and 6-311G (d, p)/6–311++G (d, p) basis sets. All the vibrational modes have been calibrated and justified in comparison to their experimental counterparts. Mustard's polarizability and hyperpolarizability components, Natural Bond Analysis (NBO), electronic properties, Fukui function analysis, various global parameters, Quantum Theory of Atoms In Molecule (QTAIM) analysis, ADMET analysis, and docking analysis have all been investigated using the same theory and basis sets, indicating its biochemical significance. The biological activity of the molecule is reported by using PASS software. The Full fitness score and binding affinity parameters are utilized to determine the binding strength with 6cq3 protein. The acidity of the title molecule is calculated in water solvent by polarizable continuum model (PCM) solvent effects (estimated in water). The HOMO, LUMO, and MESP plots are used to explore the nature of binding and surfaces. The Fukui functions are computed using Mulliken atomic charges for neutral atoms, cations, and anions. The Ultraviolet–visible (UV–vis) of the molecule is computed employing the TD-DFT method.  相似文献   
993.
The current research focused on the development of Platinum–Rhodium alloy coating (Pt– Rh) on SS304 and its applications in antibacterial studies. Electrodeposition is considered to be one of the most suitable methods because it enhances the therapeutic effects of noble metals (Pt–Rh alloy). The electrodeposited coating is an economical and time-saving alternative to existing coating methods. The newly developed Pt–Rh coating was investigated using a scanning electron microscope (SEM) and an atomic force microscope (AFM). Using the agar Petri plate and broth culture method, the antibacterial effect of the platinum-rhodium alloy was investigated against Gram-negative Escherichia coli and Gram-positive bacteria such as Staphylococcus saprophytes, Bacillus Subtilis, and Enterococcus faecalis. The Pt–Rh alloy coated samples obtained by Direct current (DC) and Pulse coating (PC 50% and PC 75%) were examined for antibacterial study. The PC 75% Pt–Rh alloy coating exhibits significant antibacterial activity, demonstrating a maximum zone of inhibition while leaving the rest of the coated samples by DC and PC 50% duty cycles. The study also found that when the concentration of Pt–Rh solution rises from 5 μL to 15 μL, so does the antibacterial activity. The findings of the study showed that electrodeposited platinum-rhodium alloy metal ions may be handy bacteriostatic in the coming years.  相似文献   
994.
Organotin complexes of Schiff bases (derived from the condensation of hydrazides with salicylaldehyde derivatives) were prepared and their characterization was done using several spectroscopic techniques like FTIR, NMR (1H, 13C, and 119Sn) and mass spectrometry. The spectroscopic data of the ligands and their corresponding complexes revealed that the Schiff bases chelated to the tin metal in a tridentate manner through –ONO atoms (oxygen atom of the hydroxyl group of the salicylaldehydic derivatives, the nitrogen atom of azomethine group, and the oxygen atom of enolic group present in the carboxylic acid hydrazides). Around tin atom pentacoordinated geometry was exhibited. The synthesized ligands and their complexes have been assessed for their biological potency (antibacterial, antifungal and antioxidant using Ciprofloxacin, Fluconazole and Ascorbic acid as reference compounds) and few of the compounds showed optimistic activity. The ligands having electron withdrawing group attached showed greater antimicrobial activity as compared to the other ligands. The complexes showed the better activity than the ligands. The general trend followed by the complexes was diphenyl ?> ?dibutyl ?> ?dimethyl substituted complexes. Compound 11 was the most active against microbes. The antioxidant activity increased with electron donating group. The phenyl substituted complexes showed better activity as compared to the dibutyl and dimethyl substituted complexes. Compound 20 was the best antioxidant.  相似文献   
995.
Chelating resins based on biopolymers, specifically cellulose, offers a green analytical method for determination of metal ions at trace levels present in various samples. It offers a fast, accurate and simple method for separation and pre-concentration of metal ions at low concentrations, prior to their determination by instrumental method. Cellulose based chelating resin (CELL-GLY) has been synthesised by immobilising glycine on it. CELL-GLY was used for the determination of trace amounts of Cu2+ and Ni2+ from aqueous solutions before their determination by FAAS. The preparation of CELL-GLY involves simple steps, based on natural and easily available biopolymer cellulose, which makes its use as chelating resin is a green method. The Cu2+ and Ni2+ can be quantitatively recovered from the CELL-GLY in the pH range 4.8–6.9 and 6.9-7.8 respectively with a recovery of more than 95% for each of these metal ions. Recovery of these metal ions using CELL-GLY was quantitative up to 35 °C. The detection limits for copper and nickel by FAAS were 1.20 ppb and 1.40 ppb, respectively. The method was successfully employed for the determination of trace amounts of Cu2+ and Ni2+ in various samples.  相似文献   
996.
Groundwater quality is the major concern all over the world. Natural processes and manmade activities are the prime reasons for the contamination of available water resources. It is crucial to assess the quality of groundwater in areas surrounded by various industries. The present study was carried out to assess the groundwater quality during pre-monsoon and post monsoon seasons of 2016, in two mandals of Vizianagaram district of Andhra Pradesh via multivariate statistical analysis and water quality index method. The present work gains importance in light of the construction of proposed international airport at Bhohapuram and the existence of various industries in Pusapatirega mandal. A total of thirty-seven villages, eighteen from Bhogapuram mandal and seventeen from Pusapatirega mandal were selected for the present study. Factor analysis, linear regression analysis, correlation matrix analysis and cluster analysis tools were used to emphasize the parameters influencing quality of water in the chosen study area. From the analysis reports, it was found that the groundwater of the two mandals under investigation was strongly influenced by EC, TDS, total hardness(TH), Ca+2, Mg+2 and K+. During the two seasons under study, the water quality index value was found to be greater than 100 indicating that the water is unfit for human consumption. Concentration of Ca+2, Mg+2 and K+ were found to be beyond the permissible limits prescribed by BIS (2012). Dissolution of calcium and magnesium bearing minerals, mixing of industrial and household wastes may be the reasons for elevated concentration levels of these parameters.  相似文献   
997.
In this study, optimum conditions for adsorption of heavy metals such as Cu2+, Cd2+ and Pb2+ onto a low-cost, magnetically modified-alkali conditioned anaerobically digested sludge (MADS) adsorbent were obtained. Response Surface Methodology (RSM) incorporating Central Composite Design (CCD) of experiments was applied to optimize four independent process variables. Statistical analysis was executed by ANOVA and the quadratic model developed had regression coefficients of 0.959, 0.957 and 0.95 for Cu2+, Cd2+ and Pb2+, respectively. The independent variables such as pH, time and initial concentration positively influenced adsorption capacity, qe, whereas the value of qe decreased with an increase in MADS dosage. Model validation experiments for optimization of adsorption process showed comparable results with predicted values. The adsorption capacity of MADS adsorbent at optimum conditions found through RSM analysis was 29.721 mg L?1, 28.551 mg L?1 and 28.601 mg L?1 for Cu2+, Cd2+ and Pb2+ respectively.  相似文献   
998.
Nelumbo nucifera leaves are rich source of natural wax possessing super-hydrophobic properties. It provides protection to them from ecological turbulences and climatic wear and tear. In this study, various experiments have been conducted to observe the yield of extraction and the determination of various functional groups, which are present in natural wax, derived from Nelumbo nucifera leaves. The natural wax has been extracted from lotus leaves through non-polar (hexane) and polar (ethanol) solvent via different extraction methods. The superhydrophobic wax has been successfully extracted with hexane. Whereas, ethanol did not extract the water-repellent wax of lotus leaf. Considering the cumulative amount, i.e. (desired + undesired), the maceration shows the extraction of 2.9% (%w/w, through hexane) and 10.2% (%w/w, through ethanol), while it was found 2.5% (%w/w, cycle period 15 min) and 9.0% (%w/w, cycle period 26 min) respectively, in case of Soxhlet extraction technique. For this specific case of natural wax recovery from biomass (lotus leaf), the maceration (traditional method) resulted a little bit superior extraction yield in comparison to the Soxhlet extraction method for extraction of crude wax. In the case of non-polar solvent (hexane), an extraction yield of 1.97% (%w/w) through maceration method was observed while in the case of non-polar solvent (ethanol), an extraction yield of 1.62% (%w/w) through Soxhlet extraction was observed. The TLC analysis on both types of extracts was performed. For the detection of various hydrocarbon chains in the crude wax extracts, FTIR was also performed. Topography of wax surface and wax-coated waterproof fabric was compared through SEM.  相似文献   
999.
Barium hexaferrite (BaFe12O19) is a promising candidate for ceramics, microwave devices and numerous applications. Barium hexaferrite was synthesised via the sol-gel auto-combustion technique using glycine fuel. The X-ray diffraction technique confirmed the hexagonal structure of the particles with space group P63/mmc. The morphological analysis was performed using the field-emission scanning microscope, and the images displayed the plate-like particle formation. Transmission electron microscopy was employed to determine the average particle size of the sample, which was estimated to be 155.93 nm. The magnetic studies were taken through the vibrating sample magnetometer (VSM) at 300 K, with which the saturation magnetization (Ms), coercivity (Hc), squareness ratio (Mr/Ms), and energy product (BHmax) was calculated, and the particles were validated to be in single domain arrangement. The dielectric properties were investigated through the LCR meter. Koop and Maxwell-Wagner's model was used to interpret charge conduction and the occurrence of relaxations in the system.  相似文献   
1000.
This work is intended to examine the microbially influenced corrosion on galvanized steel (GS) caused by sulfate-reducing bacteria (SRB). The efficacy of Butea monosperma (palash) leaf extract to mitigate the corrosion caused by Desulfovibrio desulfuricans was investigated in modified Barr's medium. Weight loss and electrochemical analysis were performed to check the corrosion rate at regular time intervals. SEM images were performed to understand the level of deterioration of the metal surfaces. Image analysis of the unprotected sample showed the presence of pits. From the gravimetric study, the maximum inhibition efficiency (IE) of 98% was obtained with 500 ppm of Palash leaf extract for the fourth-week sample. With the addition of 500 ppm of palash extract, the sulfide concentration decreases to 0 ppm from 123 ppm. Outcomes of potentiodynamic polarization (PP) studies showed that the extract disturbs the cathodic reaction significantly and moves the corrosion potential to a more negative value and IE was about 71% from PP studies. FTIR and GC-MS analysis was performed to recognize the plausible chemical compounds present in Palash leaf powder. EIS results confirmed that the resistance to corrosion increases substantially with the addition of inhibitor. The mechanism for corrosion inhibition has been proposed based on the results obtained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号