首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   737篇
  免费   29篇
  国内免费   10篇
化学   443篇
晶体学   6篇
力学   23篇
数学   146篇
物理学   158篇
  2023年   5篇
  2022年   6篇
  2021年   24篇
  2020年   21篇
  2019年   11篇
  2018年   15篇
  2017年   16篇
  2016年   45篇
  2015年   28篇
  2014年   35篇
  2013年   57篇
  2012年   63篇
  2011年   50篇
  2010年   38篇
  2009年   25篇
  2008年   52篇
  2007年   35篇
  2006年   40篇
  2005年   25篇
  2004年   22篇
  2003年   19篇
  2002年   18篇
  2001年   8篇
  2000年   10篇
  1999年   5篇
  1998年   7篇
  1997年   4篇
  1996年   4篇
  1995年   5篇
  1994年   5篇
  1993年   13篇
  1992年   5篇
  1991年   3篇
  1990年   6篇
  1989年   3篇
  1988年   3篇
  1985年   4篇
  1984年   2篇
  1981年   4篇
  1978年   3篇
  1976年   3篇
  1975年   2篇
  1974年   2篇
  1973年   5篇
  1972年   2篇
  1969年   3篇
  1968年   2篇
  1940年   1篇
  1937年   2篇
  1934年   1篇
排序方式: 共有776条查询结果,搜索用时 15 毫秒
111.
112.
In an erbium-doped fiber amplifier(EDFA), erbium ions act as a three-level system. Therefore, much higher pump energy is required to achieve the population inversion in an erbium-doped fiber(EDF). This higher pump energy requirement complicates the efficient design of an EDFA. However, efficient use of the pump power can improve the EDFA performance. The improved performance of an EDFA can be obtained by reducing the doping radius of the EDF. A smaller doping radius increases pump–dopant interactions and subsequently increases the pump–photon conversion efficiency. Decreasing the doping radius allows a larger proportion of dopant ions,which are concentrated near the core, to interact with the highest pump intensity. However, decreasing the doping radius beyond a certain limit will bring the dopant ions much closer and introduce detrimental ion–ion interaction effects. In this Letter, we show that an optimal doping radius in an EDF can provide the best gain performance. Moreover, we have simulated the well-known numerical aperture effects on EDFA gain performance to support our claim.  相似文献   
113.
Using density functional theory combined with non-equilibrium Green’s function method, we have investigated the electronic and transport properties of graphenes defected by one and two carbon ad-dimers (CADs), placed parallel to the graphene lattice. Addition of these CADs to graphenes creates 3D paired pentagon–heptagon defects (3D-PPHDs). The band structure, density of states (DOS), quantum conductance, projected DOS, as well as the current–voltage characteristic per graphene super-cells containing each type of 3D-PPHD are calculated. The local strain introduced to graphene by 3D-PPHDs forces the C-bonds in the dimers to hybridize in sp 3-like rather than sp 2-like orbitals, creating localized states at the center of the corresponding defect below the Fermi energy. Simulations show that the zero-bias conductances per super-cells containing defects created by one and two CADs exhibit dip about ~0.579 and ~0.253 eV below their corresponding Fermi levels, respectively. These can be attributed to the localized states around the same energy levels. Simulations also show that the enhanced carriers scatterings within the graphenes defected by the 3D-PPHDs have increased their overall resistances, as compared with the pristine graphene. Moreover, the current–voltage characteristic calculated per super-cell for each case shows that the current for those containing one and two CADs, at an applied voltage of 0.5 V, is ~5 and 13 % less than the current calculated for the pristine super-cell of the same size.  相似文献   
114.
The preparation of pyrazolo pyrimidinone derivatives was performed by using five component reactions of phthalaldehyde, cyanomethylamine, electron deficient acetylenic compounds, isocyanate, hydrazine, and catalytic amounts of ZnO/Fe3O4-magnetic nanoparticles as a high performance catalyst under ultrasonic conditions at ambient temperature in aquause media at room temperature. It should be mentioned that this catalyst was prepared using Spinacia oleracea water extract. In addition, for investigation of antioxidant ability, radical trapping by DPPH and reducing power of ferric ion experiments was performed. As a result, synthesized compounds show excellent radical trapping by DPPH and good reducing ability of ferric ion. The current procedure has the benefits for instance excellent yield of reaction, green media, and easy separation of product and catalyst.  相似文献   
115.
116.
Four mononuclear copper(II) and zinc(II) complexes were synthesized by the reaction of copper and zinc salts with 3,4-dichlorophenylactic acid, 2-bromophenylactic acid, biphenylacetic acid (O-donor ligand) and bipyridine (N-donor ligands) having the general formulae [(L)2Cu(bp)(H2O)] ( 1 ), [(BpA)2Cu(bp)] ( 2 ), [(L)2Zn(bp)(H2O)] ( 3 ) and [(L*)2Zn(bp)] ( 4 ) (L = 3,4-dichlorophenylacetate, L* = 2-bromophenylacetate bp = bipyridine, and BpA = biphenylacetate). Structures of all compounds were characterized through FT-IR spectroscopy and X-ray diffraction analysis. FT-IR spectra of all complexes confirmed the binding mode of Cu-O and Zn-O. XRD data revealed that complexes 1 – 3 exhibited distorted octahedral arrangement, whereas complex 4 has a distorted tetrahedral environment. Micellization behavior was examined with anionic surfactant (SDS) by conductance measurement as well as absorption spectral analysis. DNA binding study was assessed through viscosity measurement and UV/Vis spectrophotometry. DPPH free radical scavenging assay was measured by UV/Vis spectrophotometry. The results showed nice biological potential of all the complexes.  相似文献   
117.
Copper-doped zinc oxide nanoparticles (NPs) CuxZn1−xO (x = 0, 0.01, 0.02, 0.03, and 0.04) were synthesized via a sol-gel process and used as an active electrode material to fabricate a non-enzymatic electrochemical sensor for the detection of glucose. Their structure, composition, and chemical properties were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) and Raman spectroscopies, and zeta potential measurements. The electrochemical characterization of the sensors was studied using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). Cu doping was shown to improve the electrocatalytic activity for the oxidation of glucose, which resulted from the accelerated electron transfer and greatly improved electrochemical conductivity. The experimental conditions for the detection of glucose were optimized: a linear dependence between the glucose concentration and current intensity was established in the range from 1 nM to 100 μM with a limit of detection of 0.7 nM. The proposed sensor exhibited high selectivity for glucose in the presence of various interfering species. The developed sensor was also successfully tested for the detection of glucose in human serum samples.  相似文献   
118.
119.
120.
The use of quasi-isoelectric buffers consisting of narrow pH cuts of carrier ampholytes (NC) has been investigated to limit protein adsorption on capillary walls during capillary zone electrophoresis experiments. To quantify protein adsorption on the silica surface, a method derived from that of Towns and Regnier has been developed. alpha-Lactalbumin (14 kDa, pI 4.8) and alpha-chymotrypsinogen A (25 kDa, pI 9.2) have been used as model proteins. Acidic narrow pH cuts of carrier ampholytes (NC, pH 3.0) obtained from fractionation of Serva 4-9 carrier ampholytes were used as BGE in bare-silica capillaries, and allowed to decrease significantly protein adsorption, as compared to experiments performed with classical formate buffer. The use of NC as BGE appeared to be as efficient as the use of polydimethylacrylamide coating to prevent protein adsorption. This increase of protein recovery when using NC was attributed to the interaction of carrier ampholytes with the silica surface, leading to a shielding of the capillary wall.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号