首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   849篇
  免费   26篇
  国内免费   3篇
化学   539篇
晶体学   5篇
力学   23篇
数学   83篇
物理学   228篇
  2023年   6篇
  2021年   11篇
  2020年   17篇
  2019年   17篇
  2018年   10篇
  2017年   8篇
  2016年   16篇
  2015年   17篇
  2014年   18篇
  2013年   44篇
  2012年   43篇
  2011年   55篇
  2010年   22篇
  2009年   20篇
  2008年   27篇
  2007年   41篇
  2006年   50篇
  2005年   40篇
  2004年   35篇
  2003年   22篇
  2002年   24篇
  2001年   18篇
  2000年   16篇
  1999年   12篇
  1998年   7篇
  1997年   14篇
  1996年   22篇
  1995年   12篇
  1994年   12篇
  1993年   10篇
  1992年   10篇
  1991年   12篇
  1990年   11篇
  1989年   7篇
  1988年   5篇
  1986年   7篇
  1985年   10篇
  1984年   16篇
  1983年   10篇
  1982年   7篇
  1981年   13篇
  1980年   5篇
  1979年   10篇
  1978年   7篇
  1977年   13篇
  1976年   5篇
  1975年   4篇
  1974年   9篇
  1973年   7篇
  1966年   4篇
排序方式: 共有878条查询结果,搜索用时 46 毫秒
21.
A perturbation theory approach was developed for predicting the vibrational and electronic second-order nonlinear optical (NLO) polarizabilities of materials and macromolecules comprised of many coupled chromophores, with an emphasis on common protein secondary structural motifs. The polarization-dependent NLO properties of electronic and vibrational transitions in assemblies of amide chromophores comprising the polypeptide backbones of proteins were found to be accurately recovered in quantum chemical calculations by treating the coupling between adjacent oscillators perturbatively. A novel diagrammatic approach was developed to provide an intuitive visual means of interpreting the results of the perturbation theory calculations. Using this approach, the chiral and achiral polarization-dependent electronic SHG, isotropic SFG, and vibrational SFG nonlinear optical activities of protein structures were predicted and interpreted within the context of simple orientational models.  相似文献   
22.
Empore disks were used to successfully extract herbicide residues from a difficult-to-analyze surface water source and deionized water. Herbicide recoveries were lower in surface water at 7,14, or 21 days after fortification and storage at 4 degrees C, presumably due to chemical sorption onto precipitated organic particulates. The addition of acid to the samples, as recommended in EPA Method 525.2, did not affect recoveries of alachlor and metolachlor, but reduced recoveries of atrazine, simazine, and cyanazine. Treatment of water samples with sodium hypochlorite did not affect alachlor or metolachlor recoveries, but greatly reduced the recovery of all triazine herbicides. This indicates that addition of acid or sodium hypochlorite to water samples may be detrimental to triazine analysis.  相似文献   
23.
The palladium-catalyzed amidation of electron-deficient aryl chlorides proceeds readily in the presence of low CO pressures and a slight excess of an iodide salt. The rates of amidation are accelerated over those without added salt, and iodide is preferred over bromide or chloride. More electron-rich aryl chlorides were not effectively amidated, either with or without added iodide. We postulate that an intermediate anionic palladium(0) iodide complex is responsible for the enhanced reactivity.  相似文献   
24.
Naringenin is a natural widespread flavanone occurring in different foodstuffs that presents several important biological activities. Although its properties are well documented, its mechanisms of action are still controversial. The present article reports a conformational analysis of naringenin, using the semiempirical AM1 and ab initio methods, at the Hartree–Fock level of theory. The 3-21G, 3-21G*, 6-31G, and 6-31G** basis sets were used. The electron correlation effects were included through the Møller–Plesset second-order perturbation theory. The solvation of naringenin has been investigated through the standard SCRF, the supermolecule (SM), and the combined SM/SCRF models. The results have shown that there are two degenerate forms of naringenin, differing mainly by the orientation of a hydroxyl group (C4—OH). The energy barrier for the interconversion between them is ca. 6 kcal.mol–1, suggesting some conjugation between the -system of the aromatic B ring and the hydroxyl group (C4—OH).  相似文献   
25.
A one-pot, two-step process that transforms terminal alkynes into ethyl methyl-substituted benzylic quaternary carbon centers is described. (E)-2,2-Disubstituted-1-alkenyldimethylalanes have been shown to participate in 1,2-alkyl migration from aluminum to carbon with concomitant arylation at the 2-position to furnish ethyl methyl-substituted benzylic quaternary carbon centers, when reacted intramolecularly with aryl halides and triflates in the presence of a Pd(0) catalyst. The protocol is initiated with Cp2ZrCl2-catalyzed methylalumination of terminal alkynes followed by palladium-catalyzed intramolecular arylation of the resulting (E)-2,2-disubstituted-1-alkenyldimethylalanes, leading to 1,2-methyl shift from aluminum to carbon. In that sequence, a total of three new C-C single bonds are made, and two of the three alkyl groups on Me3Al transferred to the substrate on vicinal carbons. This method was applied to a variety of substrates, and the mechanism was investigated by deuterium-labeling experiments, which revealed that protodealumination of the final dialkylaluminum triflate or halide intermediates by CH3CN results in the formation of the fourth bond in the course of the transformation.  相似文献   
26.
Luminescence of 1,3-dimethylxanthine in solution is impaired owing to collisional deactivation by solvent molecules and matrix interferences. Energy absorbed by 1,3-dimethylxanthine has been transferred to trivalent europium which emits narrow-band radiation in a region distant from background interferences. The enhanced luminescence of trivalent europium was utilized for the determination of 1,3-dimethylxanthine in buffered aqueous solution. An analytically useful range from 1.1 × 10?5?5.0 × 10?4 M and a detection limit of 1.1 × 10?5 M were obtained. The methodology for the analytical procedure was determined.  相似文献   
27.
CO2 reduction processes continue to be developed for electrosynthesis, energy storage applications, and environmental remediation. A number of promising materials have shown high activity and selectivity to target reduction products. However, the progress has been mainly at a small laboratory scale, and the technical challenges of large scale CO2 reduction have not been considered adequately. This review covers recent advancements in catalyst materials and cell designs. The leading materials for CO2 reduction to a number of useful products are presented with their corresponding cell and reactor designs. The latest efforts to progress to industrially relevant scales are discussed, along with the challenges that must be met for carbon dioxide reduction to be a viable route for mass scale production.  相似文献   
28.
Sodium triacetoxyborohydride is presented as a general reducing agent for the reductive amination of aldehydes and ketones. Procedures for using this mild and selective reagent have been developed for a wide variety of substrates. The scope of the reaction includes aliphatic acyclic and cyclic ketones, aliphatic and aromatic aldehydes, and primary and secondary amines including a variety of weakly basic and nonbasic amines. Limitations include reactions with aromatic and unsaturated ketones and some sterically hindered ketones and amines. 1,2-Dichloroethane (DCE) is the preferred reaction solvent, but reactions can also be carried out in tetrahydrofuran (THF) and occasionally in acetonitrile. Acetic acid may be used as catalyst with ketone reactions, but it is generally not needed with aldehydes. The procedure is carried out effectively in the presence of acid sensitive functional groups such as acetals and ketals; it can also be carried out in the presence of reducible functional groups such as C-C multiple bonds and cyano and nitro groups. Reactions are generally faster in DCE than in THF, and in both solvents, reactions are faster in the presence of AcOH. In comparison with other reductive amination procedures such as NaBH(3)CN/MeOH, borane-pyridine, and catalytic hydrogenation, NaBH(OAc)(3) gave consistently higher yields and fewer side products. In the reductive amination of some aldehydes with primary amines where dialkylation is a problem we adopted a stepwise procedure involving imine formation in MeOH followed by reduction with NaBH(4).  相似文献   
29.
The conjugate addition of benzylic phenylsulfonyl carbanions (2a'-d') to enoates derived from d-(+)-mannitol (E- or Z-1a-c) was studied using THF and THF/HMPA as solvent. Under kinetic conditions (-78 degrees C), enoate E-1a,b led to a mixture of syn-(R,S) and anti-(S,S) adducts (55/45), and syn-(R,S) adducts were the main product obtained ( approximately 90/10) from enoate Z-1a. Under thermodynamic conditions (-78 degrees C to room temperature) syn-(R,S) adducts were also preferentially formed ( approximately 90/10), despite the geometry at the double bond in the acceptor. Enoate 1c (E/Z = 57/43), bearing an additional benzyl group at the alpha-position, also reacted with carbanions 2'a,b, under thermodynamic conditions, leading to syn-adducts in excellent de (control at the three newly generated stereogenic centers). The adducts were quantitatively transformed into the corresponding beta-gamma-disubstituted gamma-butyrolactones and alpha,beta,gamma-trisubstituted gamma-butyrolactones. (1)H NMR studies (NOE and J-coupling) of these lactones allowed us to determine their configuration at the newly generated chiral centers. The reduction of the C-S bond in adducts syn-(R,S) with Na/Hg, followed by treatment of the resulting products in aqueous acid media, led to enantioenriched beta-benzyl-gamma-hydroxymethyl-gamma-butyrolactones. The conformational equilibrium of enoates E- and Z-1b was evaluated by theoretical calculations (ab initio, MP2/6-31G), and a mechanistic rationale was proposed to explain the observed stereoselectivities.  相似文献   
30.
The complexes PtRu(5)(CO)(15)(PMe(2)Ph)(mu(6)-C) (2), PtRu(5)(CO)(14)(PMe(2)Ph)(2)(mu(6)-C) (3), PtRu(5)(CO)(15)(PMe(3))(mu(6)-C) (4), PtRu(5)(CO)(14)(PMe(3))(2)(mu(6)-C) (5), and PtRu(5)(CO)(15)(Me(2)S)(mu(6)-C) (6) were obtained from the reactions of PtRu(5)(CO)(16)(mu(6)-C) (1) with the appropriate ligand. As determined by NMR spectroscopy, all the new complexes exist in solution as a mixture of isomers. Compounds 2, 3, and 6 were characterized crystallographically. In all three compounds, the six metal atoms are arranged in an octahedral geometry, with a carbido carbon atom in the center. The PMe(2)Ph and Me(2)S ligands are coordinated to the Pt atom in 2 and 6, respectively. In 3, the two PMe(2)Ph ligands are coordinated to Ru atoms. In solution, all the new compounds undergo dynamical intramolecular isomerization by shifting the PMe(2)Ph or Me(2)S ligand back and forth between the Pt and Ru atoms. For compound 2, DeltaH++ = 15.1(3) kcal/mol, DeltaS++ = -7.7(9) cal/(mol.K), and DeltaG(298) = 17.4(6) kcal/mol for the transformation of the major isomer to the minor isomer; for compound 4, DeltaH++ = 14.0(1) kcal/mol, DeltaS++ = -10.7(4) cal/(mol.K), and DeltaG(298) = 17.2(2) kcal/mol for the transformation of the major isomer to the minor isomer; for compound 6, DeltaH++ = 18(1) kcal/mol, DeltaS++ = 21(5) cal/(mol.K) and DeltaG(298) = 12(2) kcal/mol. The shifts of the Me(2)S ligand in 6 are significantly more facile than the shifts for the phosphine ligand in compounds 2-5. This is attributed to a more stable ligand-bridged intermediate for the isomerizations of 6 than that for compounds 2-5. The intermediate for the isomerization of 6 involves a bridging Me(2)S ligand that can use two lone pairs of electrons for coordination to the metal atoms, whereas a tertiary phosphine ligand can use only one lone pair of electrons for bridging coordination.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号