首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   8篇
  国内免费   19篇
化学   42篇
力学   1篇
综合类   2篇
数学   9篇
物理学   65篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2015年   5篇
  2014年   8篇
  2013年   1篇
  2012年   3篇
  2011年   4篇
  2010年   8篇
  2009年   11篇
  2008年   9篇
  2007年   6篇
  2006年   4篇
  2005年   5篇
  2004年   5篇
  2003年   5篇
  2002年   6篇
  2001年   6篇
  2000年   4篇
  1999年   4篇
  1998年   2篇
  1997年   1篇
  1995年   3篇
  1994年   6篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
排序方式: 共有119条查询结果,搜索用时 781 毫秒
41.
李良 《现代物理知识》2009,(4):I0001-I0001
太阳系以太阳为中心,包括所有受到太阳引力约束的天体。其中有八颗行星(即水星、金星、地球、火星、木星、土星、天王星和海王星,还有至少167颗已知的卫星);5颗矮行星及其卫星,矮行星是介于行星与太阳系小天体之间的天体。  相似文献   
42.
李良 《现代物理知识》2009,(5):I0001-I0008
根据国际天文联合会(IAU)第26届会员大会(2006年8月)的决议案,冥王星被剔除行星之列,成为矮行星;太阳系的天体共划为三大类别:即行星(共八颗)、矮行星(目前注册为五颗)和太阳系小天体、所谓太阳系小天体包括小行星、外海王星天体和彗星。  相似文献   
43.
李良 《现代物理知识》2009,(1):I0001-I0008
人类认识宇宙经历了漫长的过程。天文学的不断发展对于历代哲学和科学技术的进步不断提出挑战。宇宙是怎样起源和演化的?宇宙的结构究竟如何?我们的宇宙将来结局如何甲这些仍然是现代宇宙学面临的课题。为了理解现代宇宙学,在这期彩色插页里,我们以一些精彩的画面回眸一下人类探索宇宙的历程,或许可以使我们更好地认识和理解宇宙学最新的发展方向。  相似文献   
44.
刘军  谭德庆  李良  谢会芹 《运筹与管理》2017,26(10):112-120
在竞争环境下,探讨议价能力对产品定位-价格决策、成员利润、用户以及社会整体的影响,采用稳定性分析法研究均衡状态下的渠道结构分布,并对基本模型进行拓展分析。研究表明:生产商议价能力越强,产品批发/零售价格和渠道成员利润越高,零售商在筛选产品生产商时更愿意选择知名品牌;采用自营模式将提高消费者剩余和社会福利;成本差异的扩大将提高社会福利,而用户偏好不确定性虽然有助于提升上下游成员利润,但会损害社会整体利益。  相似文献   
45.
太阳活动与地球的空间环境   总被引:1,自引:0,他引:1  
 光辉的太阳是地球万物生长的天然能量源泉,它不断地向太空发射大量的光和热.观测表明,太阳光球及其以上的太阳较外层大气中,时常有较大尺度或局部区域的、缓慢的或爆发型的变化现象,诸如太阳黑子、日珥和耀斑等,太阳物理学家把这些现象统称为“太阳活动”.太阳活动现象非常复杂多变,可以说是相当的丰富多彩.太阳黑子数目的变化具有显著的周期性,太阳黑子大量出现的期间叫做太阳活动峰年,黑子极少的期间称为太阳活动谷年或低年,两个峰年之间的周期平均约11年.随着21世纪的来临,美国国家海洋和大气管理局的科学家发出警告说,2000年太阳活动将进人极大年──即太阳活动高峰期,剧烈的太阳活动可能会扰乱近地空间环境.  相似文献   
46.
采用相同的分离技术,从三七、水葫芦和菠菜植物叶子中提取叶绿体.利用吸收光谱和低温荧光光谱及皮秒荧光单光子计数技术对这3种叶绿体的光谱性质和光系统Ⅱ荧光寿命进行了研究.这3种叶绿体吸收光谱相似,暗示着不同的植物都能高效吸收不同波长的光子.采用三指数动力学模型对测定的光系统Ⅱ荧光衰减曲线拟合,水葫芦植物叶绿体光系统Ⅱ荧光衰减寿命分别是:138,521和1494ps;菠菜体系叶绿体荧光寿命分别是:197,465和1459 ps;三七叶绿体体系荧光寿命分别是:30,274和805ps;并且归属了荧光组分,慢速度荧光衰减由叶绿素堆积造成,中等速度荧光衰减源于PSⅡ反应中心重新结合电荷组分,快速度荧光衰减归属于PSⅡ反应中心组分.定义并且基于20ps模型计算了三七、水葫芦和菠菜叶绿体光系统Ⅱ反应中心激发能转能效率,分别是60%,87%和91%.实验结果支持20 ps时间常数模型.三七叶绿体光系统Ⅱ反应中心低转能效率,2个光系统之间激发能分配平衡状态差的结果,以及它的光系统Ⅰ激发能红移的现象都与该植物生长速度慢的现象相吻合,显示植物生长速度特性可体现在光合作用原初过程中,表明植物生长速度与它的荧光性质及荧光寿命相关性,生长慢的植物对吸收的光子能量利用效率较低,而生长快的植物,转能效率则较高.  相似文献   
47.
光合水氧化是地球上最重要的生化过程之一.光合放氧生物包括光系统Ⅰ(PSⅠ)和光系统Ⅱ(PSⅡ)两种类型反应中心,光系统Ⅱ反应中心能以水作为电子给体,利用光能氧化水产生质子和氧气.对于水如何被氧化这个难题前人已做了大量的工作,但到目前为止放氧复合物(OEC)的结构及水氧化的机理仍不清楚.本文结合当前研究结果,就光合放氧复合物的结构及光合放氧机理进行了综述,希望能有助于推进这方面的工作.  相似文献   
48.
Amorphous sulfur (a-S) is prepared by rapidly compressing molten sulfur to high pressure. From differential scanning calorimeter measurements, a large exothermic peak has been observed around 396K. Online wide-angled x-ray scattering spectra indicate that no crystallization occurs in the temperature range 295-453K, suggesting that the exothermal process corresponds to an amorphous-to-amorphous transition. The transition from amor- phous sulfur to liquid sulfur is further verified by the direct observation of sulfur melt at the temperature of the associated transition. This is the first time of reporting that a-S transforms to liquid sulfur directly, which has avoided a crystallization process. What is more, the transition is an exothermic and a volume expansion process.  相似文献   
49.
 月球和水星月亮是距离地球最近的天体,它的圆缺(称为月相)变化是原始人类最早注意的天象之一。早在公元前5世纪,古希腊哲学家阿那克萨戈拉斯(Anaxagoras)认为月亮是个象地球一样的星球。我国古代很早就产生了“嫦娥奔月”、“吴刚伐桂”等动人神话。  相似文献   
50.
光系统ⅡChl分子能量传递超快光谱动力学   总被引:1,自引:1,他引:0  
利用ICCD飞秒扫描成象和飞秒时间分辨光谱装置实验研究了高等植物捕光天线LHCⅡ三聚体和PSⅡ颗粒复合物的超快光谱动力学,经过吸收光谱和发射光谱分析,确定在LHCⅡ三聚体中至少存在7种Chl分子光谱特性,分别是Chlb658.7653/656、Chla665.2662.0、Chla/b671.1670/671、Chla677.1675.0、Chla682.9680/681、Chla689.1685.0和Chla695.6695.0.采用光强1013光子/cm2/脉冲激励浓度为30μg/mL的捕光天线LHCⅡ三聚体,在650nm到705nm谱段逐点探测分析处理,产生了2组短寿命组分210fs、520fs和5.2ps、36.7ps及2个长寿命组分1.8ns、2ns.最快的3个寿命210fs、520fs和5.2ps反映了三聚体Chlb分子向Chla分子的激发能传递过程;寿命36.7ps反映了Chla分子向相邻单体Chla分子的激发能传递过程;最长的2个寿命1.8ns和2ns是在三聚体中Chla分子通过中间体Chla分子辐射荧光,分别跃迁回基态的过程.获得的6个寿命组分有把激发能传递时间与Chla/b分子发射光谱相结合的特点.经拟合处理解析PSⅡ颗粒复合物光谱,得到3个组分谱,其峰值分别为686.8nm、692.2nm和694.9nm,与LHCⅡ比较分析,说明天然构型的PSⅡ有很强的吸收光能和有效传递光能的本领.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号