首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   678篇
  免费   24篇
  国内免费   6篇
化学   412篇
晶体学   8篇
力学   15篇
数学   108篇
物理学   165篇
  2023年   6篇
  2022年   7篇
  2021年   12篇
  2020年   7篇
  2019年   10篇
  2018年   7篇
  2017年   9篇
  2016年   16篇
  2015年   23篇
  2014年   27篇
  2013年   38篇
  2012年   43篇
  2011年   55篇
  2010年   24篇
  2009年   31篇
  2008年   47篇
  2007年   50篇
  2006年   37篇
  2005年   30篇
  2004年   24篇
  2003年   23篇
  2002年   13篇
  2001年   19篇
  2000年   15篇
  1999年   17篇
  1998年   13篇
  1997年   8篇
  1996年   10篇
  1995年   8篇
  1994年   13篇
  1993年   8篇
  1992年   10篇
  1991年   7篇
  1990年   5篇
  1989年   2篇
  1987年   2篇
  1986年   3篇
  1985年   6篇
  1984年   5篇
  1983年   4篇
  1982年   2篇
  1980年   2篇
  1979年   2篇
  1977年   2篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1968年   1篇
  1967年   1篇
  1884年   1篇
排序方式: 共有708条查询结果,搜索用时 15 毫秒
21.
Solubility measurements of 1-butene in water, from 20 to 50°C and at atmospheric pressure, were carried out using a Ben-Naim/Baer-type apparatus. The experimental results have a precision of about ±0.3%. Using accurate thermodynamic relations, the Ostwald coefficients at the experimental conditions and at infinite dilution, the mole fractions of the dissolved gas at the gas partial pressure of 101.325 kPa and the Henry coefficients at the water vapor pressure were calculated. The mole fraction of dissolved gas were fitted to the Clarke, Glew, and Weiss equation and thermodynamic quantities, standard molar Gibbs energy, entropy, and enthalpy changes, for the process of transferring the 1-butene molecules from the gaseous to the water phase, were computed. Moreover, solubility measurements of 1-butene in an aqueous medium for the cultivation of Xanthobacter Py2 in the same temperature range were also performed at atmospheric pressure. These solubility data are approximately 2.6% lower than those observed in pure water.  相似文献   
22.
23.
A hyperbranched aromatic polyester (HBPOH) has been synthesized, and poly(ε‐caprolactone) arms have been grown on some of its end hydroxyl groups (HBPCL). These modifiers have been used in cationic diglycidyl ether of bisphenol A formulations cured with ytterbium triflate as cationic initiator. The effect of HBPOH and HBPCL on the curing kinetics has been studied using differential scanning calorimetry (DSC). The obtained materials have been characterized by dynamomechanical analysis, DSC, thermogravimetric analysis and mechanical tests. The modifiers are incorporated into the thermosetting network because of the participation of the end hydroxyl groups in the cationic curing of epoxides by the activated monomer mechanism. Homogeneous thermosets have been obtained with a remarkable increase in impact strength without sacrificing elastic modulus or hardness. A compromise between the rigid structure of the aromatic hyperbranched core and the flexibilizing effect of the poly(ε‐caprolactone) arms is believed to be responsible for the overall thermal and mechanical properties of the materials. The use of these polymeric modifiers increases the thermal stability of the resulting materials because of the low degradability of the aromatic ester groups in the hyperbranched core and the incorporation of the modifier into the network structure. However, the presence of such ester groups makes them reworkable by hydrolysis or alcoholysis in an alkaline medium, thus opening a way for recovery of valuable substrates. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
24.
Abstract

The influence of the composition of the initiator system used in the polymerization of PGE is studied. Structural studies of intermediate species by NMR and IR spectroscopies are made which allow confirmation of some characteristics on the previously proposed mechanism and clarification of the mechanism leading to the chlorinated insoluble polymer fraction. This can be explained by the formation of halogenated oligomers in the first stage of the reaction which interchange with different aluminum alkoxides to give another type of initiator system.  相似文献   
25.
26.
27.
28.
Polymer blend membranes have been obtained consisting of a hydrophilic and a hydrophobic polymers distributed in co‐continuous phases. In order to obtain stable membranes in aqueous environments, the hydrophilic phase is formed by a poly(hydrohyethyl acrylate), PHEA, network while the hydrophobic phase is formed by poly(vinylidene fluoride‐co‐trifluoroethylene) P(VDF‐TrFE). To obtain the composites, in a first stage, P(VDF‐TrFE) is blended with poly(ethylene oxyde) (PEO), the latter used as sacrificial porogen. P(VDF‐TrFE)/PEO blend membranes were prepared by solvent casting at 70°C followed by cooling to room temperature. Then PEO is removed from the membrane by immersion in water obtaining a P(VDF‐TrFE) porous membrane. After removing of the PEO polymer, a P(VDF‐TrFE) membrane results in which pores are collapsed. Nevertheless the pores reopen when a mixture of hydroxethyl acrylate (HEA) monomer, ethyleneglycol dimethacrylate (as crosslinker) and ethanol (as diluent) is absorbed in the membrane and subsequent polymerization yields hybrid hydrophilic/hydrophobic membranes with controlled porosity. The membranes are thus suitable for lithium‐ion battery separator membranes and/or biostable supports for cell culture in biomedical applications. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 672–679  相似文献   
29.
We report a novel resistive random access memory using tri-layer dielectrics of GeO x /nano-crystal TiO2/TaON and low cost top Ni and bottom TaN electrodes. Excellent device performance of ultra-low 720 fJ switching energy, tight distributions of set/reset currents, and exceptionally long endurance of 5×109 cycles were achieved simultaneously. Such excellent endurance may create new applications such as those used for Data Centers that are ascribed to the higher-κ nano-crystal TiO2, hopping pass via grain boundaries, and fast switching speed of 100 ns to improve the dielectric fatigue during endurance stress.  相似文献   
30.
Platinum metal complexes are the most common chemotherapeutics currently used in cancer treatment. However, the frequent adverse effects, as well as acquired resistance by tumor cells, urge the development of effective alternatives. In the recent past, copper complexes with Schiff base ligands have emerged as good alternatives, showing interesting results. Accordingly, and in continuation of previous studies in this area, three new camphoric acid-derived halogenated salen ligands and their corresponding Cu (II) complexes were synthesized and their antitumor activity was evaluated in order to determine the influence of the type and number of halogens present (Br, Cl). The in vitro cytotoxic activity was screened against colorectal WiDr and LS1034 and against breast MCF-7 and HCC1806 cancer cell lines. The results proved the halogenated complexes to be very efficient, the tetrachlorinated Cu (II) complex being the most promising, presenting IC50 of 0.63–1.09 μM for the cell lines studied. The complex also shows selectivity to colorectal cancer cells compared to non-tumor colon cells. It is worth highlighting that the tetrachlorinated Cu (II) complex, our most efficient complex, shows a significantly more powerful antitumor effect than the reference drugs currently used in conventional chemotherapy. The halogenated salen and corresponding complexes were also screened for their antimicrobial activity against four bacterial species-Staphylococcus aureus, Enterococcus faecalis, Escherichia coli and Pseudomonas aeruginosa-and four fungal species-Candida albicans, Candida glabrata, Aspergillus fumigatus and Alternaria alternata. The compounds were found to exhibit moderate to strong antibacterial activity against the bacterial strains studied. NMR studies and theoretical calculations provided some insight into the structure of the ligands and copper complexes. Considering the results presented herein, our work validates the potential use of copper-based chemotherapeutics as alternatives for cancer treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号