首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1376篇
  免费   68篇
  国内免费   3篇
化学   1087篇
晶体学   10篇
力学   39篇
数学   97篇
物理学   214篇
  2024年   2篇
  2023年   3篇
  2022年   5篇
  2021年   37篇
  2020年   27篇
  2019年   38篇
  2018年   20篇
  2017年   22篇
  2016年   46篇
  2015年   42篇
  2014年   73篇
  2013年   93篇
  2012年   144篇
  2011年   158篇
  2010年   82篇
  2009年   65篇
  2008年   100篇
  2007年   82篇
  2006年   78篇
  2005年   72篇
  2004年   55篇
  2003年   49篇
  2002年   55篇
  2001年   13篇
  2000年   17篇
  1999年   10篇
  1998年   7篇
  1997年   7篇
  1996年   5篇
  1995年   7篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1986年   2篇
  1985年   4篇
  1984年   4篇
  1983年   3篇
  1982年   1篇
  1980年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
  1968年   1篇
排序方式: 共有1447条查询结果,搜索用时 187 毫秒
61.
Journal of Radioanalytical and Nuclear Chemistry - 89Zr is an emerging radionuclide with promising application in nuclear medicine for the non-invasive diagnosis of various cancers with PET...  相似文献   
62.
The chemical compatibility of perovskite-type Ba0.5Sr0.5Co0.8Fe0.2O3?δ (BSCF) oxides with Cr2O3 has been examined between room temperature and 1,100 °C. Differential thermal analysis and thermogravimetric analysis were used to analyze the thermal behavior of BSCF–Cr2O3 binary mixtures in all composition ranges (0–100 mass% BSCF). The reaction products were identified by X-ray analysis after heating at 700–1,100 °C. As we expected, it was found that perovskite-type BSCF oxide had a poor chemical compatibility with the Cr2O3 oxide. In particular, the decomposition process of the BSCF–Cr2O3 binary mixture is quite complex and it starts at about 700–750 °C. The mixtures of BSCF and Cr2O3 oxides reacted forming mixed complex oxides based on (Ba/Sr)FeO3, (Co/Fe)CrO4, and (Ba/Sr)CrO4 mixtures.  相似文献   
63.
Materials with ordered mesoporous structures have shown great potential in a wide range of applications. In particular, the combination of mesoporosity, low dimensionality, and well‐defined morphology in nanostructures may exhibit even more attractive features. However, the synthesis of such structures is still challenging in polar solvents. Herein, we report the preparation of ultrathin two‐dimensional (2D) nanoflakes of transition‐metal phosphates, including FePO4, Mn3(PO4)2, and Co3(PO4)2, with highly ordered mesoporous structures in a nonpolar solvent. The as‐obtained nanoflakes with thicknesses of about 3.7 nm are constructed from a single layer of parallel‐packed pore channels. These uniquely ordered mesoporous 2D nanostructures may originate from the 2D assembly of cylindrical micelles formed by the amphiphilic precursors in the nonpolar solvent. The 2D mesoporous FePO4 nanoflakes were used as the cathode for a lithium‐ion battery, which exhibits excellent stability and high rate capabilities.  相似文献   
64.
A facile synthesis of highly stable, water‐dispersible metal‐nanoparticle‐decorated polymer nanocapsules (M@CB‐PNs: M=Pd, Au, and Pt) was achieved by a simple two‐step process employing a polymer nanocapsule (CB‐PN) made of cucurbit[6]uril (CB[6]) and metal salts. The CB‐PN serves as a versatile platform where various metal nanoparticles with a controlled size can be introduced on the surface and stabilized to prepare new water‐dispersible nanostructures useful for many applications. The Pd nanoparticles on CB‐PN exhibit high stability and dispersibility in water as well as excellent catalytic activity and recyclability in carbon–carbon and carbon–nitrogen bond‐forming reactions in aqueous medium suggesting potential applications as a green catalyst.  相似文献   
65.
The conventional method for creating targeted contrast agents is to conjugate separate targeting and fluorophore domains. A new strategy is based on the incorporation of targeting moieties into the non‐delocalized structure of pentamethine and heptamethine indocyanines. Using the known affinity of phosphonates for bone minerals in a model system, two families of bifunctional molecules that target bone without requiring a traditional bisphosphonate are synthesized. With peak fluorescence emissions at approximately 700 or 800 nm, these molecules can be used for fluorescence‐assisted resection and exploration (FLARE) dual‐channel imaging. Longitudinal FLARE studies in mice demonstrate that phosphonated near‐infrared fluorophores remain stable in bone for over five weeks, and histological analysis confirms their incorporation into the bone matrix. Taken together, a new strategy for creating ultra‐compact, targeted near‐infrared fluorophores for various bioimaging applications is described.  相似文献   
66.
We present a label‐free biosensor that measures molecular interactions between biomolecules on the surface of a probe bead and substrate over a wide concentration range. This system is capable of detecting target biomolecules with concentrations varying from 10 nM to 0.1 pM , with high selectivity and sensitivity.  相似文献   
67.
In this work, we report the carbon fiber-based wire-type asymmetric supercapacitors (ASCs). The highly conductive carbon fibers were prepared by the carbonized and graphitized process using the polyimide (PI) as a carbon fiber precursor. To assemble the ASC device, the CoMnO2-coated and Fe2O3-coated carbon fibers were used as the cathode and the anode materials, respectively. Herein, the nanostructured CoMnO2 were directly deposited onto carbon fibers by a chemical oxidation route without high temperature treatment in presence of ammonium persulfate (APS) as an oxidizing agent. FE-SEM analysis confirmed that the CoMnO2-coated carbon fiber electrode exhibited the porous hierarchical interconnected nanosheet structures, depending on the added amount of APS, and Fe2O3-coated carbon fiber electrode showed a uniform distribution of porous Fe2O3 nanorods over the surface of carbon fibers. The electrochemical properties of the CoMnO2-coated carbon fiber with the concentration of 6 mmol APS presented the enhanced electrochemical activity, probably due to its porous morphologies and good conductivity. Further, to reduce the interfacial contact resistance as well as improve the adhesion between transition metal nanostructures and carbon fibers, the carbon fibers were pre-coated with the Ni layer as a seed layer using an electrochemical deposition method. The fabricated ASC device delivered a specific capacitance of 221 F g−1 at 0.7 A g−1 and good rate capability of 34.8% at 4.9 A g−1. Moreover, the wire-type device displayed the superior energy density of 60.2 Wh kg−1 at a power density of 490 W kg−1 and excellent capacitance retention of 95% up to 3000 charge/discharge cycles.  相似文献   
68.
The electrochemical CO2 reduction reaction (CO2RR) to yield synthesis gas (syngas, CO and H2) has been considered as a promising method to realize the net reduction in CO2 emission. However, it is challenging to balance the CO2RR activity and the CO/H2 ratio. To address this issue, nitrogen‐doped carbon supported single‐atom catalysts are designed as electrocatalysts to produce syngas from CO2RR. While Co and Ni single‐atom catalysts are selective in producing H2 and CO, respectively, electrocatalysts containing both Co and Ni show a high syngas evolution (total current >74 mA cm?2) with CO/H2 ratios (0.23–2.26) that are suitable for typical downstream thermochemical reactions. Density functional theory calculations provide insights into the key intermediates on Co and Ni single‐atom configurations for the H2 and CO evolution. The results present a useful case on how non‐precious transition metal species can maintain high CO2RR activity with tunable CO/H2 ratios.  相似文献   
69.
The composites comprising vertically aligned network of copper nanowires (CuNWs) in the presence of cellulose nanofibers were fabricated by using the freeze‐templating method and the effect of aspect ratio (A/R) of CuNWs on the thermal conductivity of epoxy composites was investigated. The thermal conductivity of epoxy composites increased to 0.79 W m?1 K?1 at 1.12 vol% of high A/R CuNWs loading, corresponding to the thermal conductivity enhancement of 365% as compared to the pure epoxy. The thermal conductivity of vertically aligned higher A/R CuNWs/epoxy, which is 38.5% and 51.9% higher than those of the lower A/R CuNWs and the randomly aligned CuNWs, respectively. The application of the epoxy composites in heat dissipation was demonstrated by the temperature changes of composites on a hot plate with the increase of heating time. These results indicate that the thermally conductive composites in this study could be applied for thermal dissipating materials in electronic devices.  相似文献   
70.
Amyloid‐β (Aβ) oligomers are implicated in Alzheimer disease (AD). However, their unstable nature and heterogeneous state disrupts elucidation of their explicit role in AD progression, impeding the development of tools targeting soluble Aβ oligomers. Herein parallel and anti‐parallel variants of Aβ(1–40) dimers were designed and synthesized, and their pathogenic properties in AD models characterized. Anti‐parallel dimers induced cognitive impairments with increased amyloidogenesis and cytotoxicity, and this dimer was then used in a screening platform. Through screening, two FDA‐approved drugs, Oxytetracycline and Sunitinib, were identified to dissociate Aβ oligomers and plaques to monomers in 5XFAD transgenic mice. In addition, fluorescent Astrophloxine was shown to detect aggregated Aβ in brain tissue and cerebrospinal fluid samples of AD mice. This screening platform provides a stable and homogeneous environment for observing Aβ interactions with dimer‐specific molecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号