首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1081篇
  免费   96篇
  国内免费   5篇
化学   877篇
晶体学   3篇
力学   17篇
数学   121篇
物理学   164篇
  2023年   29篇
  2022年   19篇
  2021年   45篇
  2020年   64篇
  2019年   54篇
  2018年   23篇
  2017年   33篇
  2016年   52篇
  2015年   62篇
  2014年   47篇
  2013年   59篇
  2012年   71篇
  2011年   82篇
  2010年   42篇
  2009年   44篇
  2008年   46篇
  2007年   42篇
  2006年   45篇
  2005年   24篇
  2004年   17篇
  2003年   23篇
  2002年   20篇
  2001年   14篇
  2000年   10篇
  1999年   11篇
  1998年   14篇
  1996年   5篇
  1995年   7篇
  1994年   4篇
  1993年   8篇
  1992年   5篇
  1991年   7篇
  1990年   6篇
  1989年   11篇
  1988年   9篇
  1987年   5篇
  1986年   5篇
  1985年   8篇
  1984年   4篇
  1983年   5篇
  1982年   10篇
  1981年   7篇
  1980年   7篇
  1979年   4篇
  1977年   15篇
  1976年   7篇
  1975年   10篇
  1974年   6篇
  1973年   8篇
  1937年   5篇
排序方式: 共有1182条查询结果,搜索用时 36 毫秒
991.
The utilization of oxygen vacancies (OVs) in sodium ion batteries (SIBs) is expected to enhance performance, but as yet it has rarely been reported. Taking the MoO3?x nanosheet anode as an example, for the first time we demonstrate the benefits of OVs on SIB performance. Moreover, the benefits at deep‐discharge conditions can be further promoted by an ultrathin Al2O3 coating. A series of measurements show that the OVs increase the electric conductivity and Na‐ion diffusion coefficient, and the promotion from ultrathin coating lies in the effective reduction of cycling‐induced solid‐electrolyte interphase. The coated nanosheets exhibited high reversible capacity and great rate capability with the capacities of 283.9 (50 mA g?1) and 179.3 mAh g?1 (1 A g?1) after 100 cycles. This work may not only arouse future attention on OVs for sodium energy storage, but also open up new possibilities for designing strategies to utilize defects in other energy storage systems.  相似文献   
992.
The chemical stability of metal–organic frameworks (MOFs) is a major factor preventing their use in industrial processes. Herein, it is shown that judicious choice of the base for the Suzuki–Miyaura cross‐coupling reaction can avoid decomposition of the MOF catalyst Pd@MIL‐101‐NH2(Cr). Four bases were compared for the reaction: K2CO3, KF, Cs2CO3 and CsF. The carbonates were the most active and achieved excellent yields in shorter reaction times than the fluorides. However, powder XRD and N2 sorption measurements showed that the MOF catalyst was degraded when carbonates were used but remained crystalline and porous with the fluorides. XANES measurements revealed that the trimeric chromium cluster of Pd@MIL‐101‐NH2(Cr) is still present in the degraded MOF. In addition, the different countercations of the base significantly affected the catalytic activity of the material. TEM revealed that after several catalytic runs many of the Pd nanoparticles (NPs) had migrated to the external surface of the MOF particles and formed larger aggregates. The Pd NPs were larger after catalysis with caesium bases compared to potassium bases.  相似文献   
993.
The formation of reversible switchable nanostructures monitored by solution and solid‐state methods is still a challenge in supramolecular chemistry. By a comprehensive solid state and solution study we demonstrate the potential of the fivefold symmetrical building block of pentaphosphaferrocene in combination with CuI halides to switch between spheres of different porosity and shape. With increasing amount of CuX, the structures of the formed supramolecules change from incomplete to complete spherically shaped fullerene‐like assemblies possessing an Ih‐C80 topology at one side and to a tetrahedral‐structured aggregate at the other. In the solid state, the formed nano‐sized aggregates reach an outer diameter of 3.14 and 3.56 nm, respectively. This feature is used to reversibly encapsulate and release guest molecules in solution.  相似文献   
994.
The chromophores ethynyl pyrene as blue, ethynyl perylene as green and ethynyl Nile red as red emitter were conjugated to the 5‐position of 2′‐deoxyuridine via an acetylene bridge. Using phosphoramidite chemistry on solid phase labelled DNA duplexes were prepared that bear single chromophore modifications, and binary and ternary combinations of these chromophore modifications. The steady‐state and time‐resolved fluorescence spectra of all three chromophores were studied in these modified DNA duplexes. An energy‐transfer cascade occurs from ethynyl pyrene over ethynyl perylene to ethynyl Nile red and subsequently an electron‐transfer cascade in the opposite direction (from ethynyl Nile red to ethynyl perylene or ethynyl pyrene, but not from ethynyl perylene to ethynyl pyrene). The electron‐transfer processes finally provide charge separation. The efficiencies by these energy and electron‐transfer processes can be tuned by the distances between the chromophores and the sequences. Most importantly, excitation at any wavelength between 350 and 700 nm finally leads to charge separated states which make these DNA samples promising candidates for light‐harvesting systems.  相似文献   
995.
In this study a novel fabrication method for a radio frequency (RF) ion funnel is presented. RF ion funnels are important devices for focusing ion clouds at low vacuum conditions for mass spectrometry or deposition‐related applications. Typically, ion funnels are constructed of stainless steel plate ring electrodes with a decreasing diameter where RF and direct current potentials are applied to the electrodes to focus the ion cloud. The presented novel design is based on a flexible circuit board that serves both as the signal distribution circuit and as the electrodes of the ion funnel. The flexible circuit board is rolled into a 3D printed scaffold to create a funnel shape with ring electrodes formed by the copper electrodes of the flexible circuit board. The design is characterized in direct comparison with a conventional steel‐plate electrode design. The discussed results show that the new funnel has similar performance to the conventionally designed funnel despite much lower manufacturing costs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
996.
High-fidelity simulations of an experimental rotating detonation engine with an axial air inlet were conducted. The system operated with hydrogen as fuel at globally stoichiometric conditions. Instantaneous data showed that the detonation front is highly corrugated, and is considerably weaker than an ideal Chapman–Jouguet wave. Regions of deflagration are present ahead of the wave, caused by mixing with product gases from the previous cycle, as well as the injector recovery process. It is found that as the post-detonation high pressure flow expands, the injectors recover unsteadily, leading to a transient mixing process ahead of the next cycle. The resulting flow structure not only promotes mixing between product and reactant gases, but also increases likelihood of autoignition. These results show that the detonation process is very sensitive to injector design and the transient behavior during the detonation cycle. Phase-averaged statistics and conditionally averaged data are used to understand the overall reaction structure. Comparisons with available experimental data on this configuration show remarkable good agreement of the predicted reacting flow structure.  相似文献   
997.
Ammonia (NH3) is recognized as a carbon-free hydrogen-carrier fuel with a high content of hydrogen atoms per unit volume. Recently, ammonia has received increasing attention as a promising alternative fuel for internal combustion engine and gas turbine applications. However, the viability of ammonia fueling future combustion devices has several barriers to overcome. To overcome the challenge of its low reactivity, it is proposed to blend it with a high-reactivity fuel. In this work, we have investigated the combustion characteristics of ammonia/diethyl ether (NH3/DEE) blends using a rapid compression machine (RCM) and a constant volume spherical reactor (CVSR). Ignition delay times (IDTs) of NH3/DEE blends were measured using the RCM over a temperature range of 620 to 942 K, pressures near 20 and 40 bar, equivalence ratios (Φ) of 1 and 0.5, and a range of mole fractions of DEE, χDEE, from 0.05 to 0.2 (DEE/NH3 = 5 – 20%). Laminar burning velocities of NH3/DEE premixed flames were measured using the CVSR at 298 K, 1 bar, Φ of 0.9 to 1.3, and χDEE from 0.1 to 0.4. Our results indicate that DEE promotes the reactivity of fuel blends resulting in significant shortening of the ignition delay times of ammonia under RCM conditions. IDTs expectedly exhibited strong dependence on pressure and equivalence ratio for a given blend. Laminar burning velocity was found to increase with increasing fraction of DEE. The burnt gas Markstein length increased with equivalence ratio for χDEE = 0.1 as seen in NH3-air flames, while the opposite evolution of Markstein length was observed with Φ for 0.1 < χDEE ≤ 0.4, as observed in isooctane-air flames. A detailed chemical kinetics model was assembled to analyze and understand the combustion characteristics of NH3/DEE blends.  相似文献   
998.
The reliable generation of quasi-homogeneous autoignition inside a combustor fed by a continuous air flow would represent a milestone in realizing pressure gain combustion in gas turbines. In this work, the ignition distribution inside a stratified fuel–air mixture is analyzed. The ability of precise and reproducible injection of a desired fuel profile inside a convecting air flow is verified by applying tunable diode laser absorption spectroscopy in non-reacting measurements. High-speed, static pressure sensors and ionization probes allow for simultaneous detection of the flame and pressure rise at several axial positions in reactive measurements with dimethyl ether as fuel. A second, exchangeable combustion tube enables optical observation of OH* intensity in combination with pressure measurements. Experiments with three arbitrary fuel profiles show a set of ignition distributions that vary in shape, homogeneity, and the number of simultaneous autoignition events. Although the measurements show notable variation, a significant and reproducible influence of the fuel injection on the ignition distribution is observed. Results show that uniform autoignition leads to a coupling of the reaction front with the pressure rise and, therefore, induces a greater aerodynamic constraint than non-uniform ignition distributions, which are dominated by propagating deflagration fronts.  相似文献   
999.
The optimization of target conflicts between the various tire properties dominates the development of modern vehicle tires. Therefore, the tire became a very complex high‐tech‐product. Every single step is a very challenging process, starting with the raw materials and their mixing, going on to the shaping of the singe parts and finishing with the building of the uncured tire and the vulcanization. A very important raw material is the natural rubber. As it is a natural product, it has some special chemical and physical properties which need some special attention during the processing.  相似文献   
1000.
Abstract

Several approaches to quantitative local structure characterization for particulate assemblies, such as structural glasses or jammed packings, use the partition of space provided by the Voronoi diagram. The conventional construction for spherical mono-disperse particles, by which the Voronoi cell of a particle is that of its centre point, cannot be applied to configurations of aspherical or polydisperse particles. Here, we discuss the construction of a Set Voronoi diagram for configurations of aspherical particles in three-dimensional space. The Set Voronoi cell of a given particle is composed of all points in space that are closer to the surface (as opposed to the centre) of the given particle than to the surface of any other; this definition reduces to the conventional Voronoi diagram for the case of mono-disperse spheres. An algorithm for the computation of the Set Voronoi diagram for convex particles is described, as a special case of a Voronoi-based medial axis algorithm, based on a triangulation of the particles’ bounding surfaces. This algorithm is further improved by a pre-processing step based on morphological erosion, which improves the quality of the approximation and circumvents the problems associated with small degrees of particle–particle overlap that may be caused by experimental noise or soft potentials. As an application, preliminary data for the volume distribution of disordered packings of mono-disperse oblate ellipsoids, obtained from tomographic imaging, is computed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号