首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   668篇
  免费   36篇
  国内免费   4篇
化学   569篇
晶体学   11篇
力学   3篇
数学   19篇
物理学   106篇
  2023年   2篇
  2022年   2篇
  2021年   28篇
  2020年   20篇
  2019年   20篇
  2018年   23篇
  2017年   16篇
  2016年   21篇
  2015年   19篇
  2014年   38篇
  2013年   50篇
  2012年   66篇
  2011年   78篇
  2010年   50篇
  2009年   37篇
  2008年   57篇
  2007年   39篇
  2006年   37篇
  2005年   31篇
  2004年   17篇
  2003年   15篇
  2002年   24篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1992年   3篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
排序方式: 共有708条查询结果,搜索用时 203 毫秒
101.
Magnetically retrieval CuFe2O4@MIL-101(Cr) metal–organic framework was successfully prepared from easily available starting materials and characterized using various spectroscopic and analytical techniques such as powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray, transmission electron microscopy, elemental mapping, Fourier transform infrared spectroscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy, Brunauer–Emmett–Teller, vibrating sample magnetometer, and inductively coupled plasma optical emission spectroscopy. The catalyst was then used in the synthesis of benzodiazepines containing a triazole moiety in water. The advantages of this protocol include high yields, reusability of the catalyst, and gram-scale synthesis.  相似文献   
102.
103.
104.
In this paper, we provide an alternate approach to the analysis of the limit of flat radial basis interpolation, thereby improving and expanding on the current understanding of this interesting problem.  相似文献   
105.
Mixed-metal oxyhydroxides—especially those of Ni and Fe—are one of the most active classes of materials known for catalyzing the oxygen evolution reaction (OER). Here, nanoparticulate mixed metal oxyhydroxides (of Ni, Fe, and Co) were prepared on an electrode surface by electrochemical reaction of a precursor solution encapsulated in aqueous nanodroplets (AnDs), with each of the droplets containing 10 s of attoliters of fluid. Electrode reactions and synthesis can be monitored in situ by electrochemistry as single AnD stochastically lands and interacts with the working electrode. Resultant metal oxyhydroxide nanoparticles can be size and composition controlled precisely by modulating the precursor solution stored in the AnD. Nanoparticulate metal oxyhydroxides were implemented as catalysts for the OER and exhibited superior catalysis compared to their thin-film counterparts, demonstrating a hundred-thousand-fold enhancement in atom efficiency at comparable turnover rates.  相似文献   
106.
Three‐dimensional (3D) carbon nitride (C3N4)‐based materials show excellent performance in a wide range of applications because of their suitable band structures. To realize the great promise of two‐dimensional (2D) allotropes of various 3D materials, it is highly important to develop routes for the production of 2D C3N4 materials, which are one‐atom thick, in order to understand their intrinsic properties and identify their possible applications. In this work, water‐dispersible, atomically thin, and small carbon nitride nanodots were produced using the chemical oxidation of graphitic C3N4. Various analyses, including X‐ray diffraction, X‐ray photoelectron, Fourier‐transform infrared spectroscopy, and combustion‐based elemental analysis, and thermogravimetric analysis, confirmed the production of 3D oxidized C3N4 materials. The 2D C3N4 nanodots were successfully exfoliated as individual single layers; their lateral dimension was several tens of nanometers. They showed strong photoluminescence in the visible region as well as excellent performances as cell‐imaging probes in an in vitro study using confocal fluorescence microscopy.  相似文献   
107.
A simple, efficient, eco-friendly, and cost-effective method has been developed for the synthesis of N-methyl-3-nitro-aryl-benzo[4,5]imidazo[1,2-a]pyrimidin-2-amine derivatives using 2-aminobenzimidazole, aldehydes and (E)-N-methyl-1-(methylthio)-2-nitroethenamine, in the presence of catalytic amount of p-toluenesulfonic acid (p-TSA) in ethanol at 80?°C conditions. The advantages of this method are the use of an inexpensive and readily available catalyst, shorter reaction times, a wide range of functional group tolerance, and high yield of products via a simple experimental and work-up procedure.  相似文献   
108.
Journal of Radioanalytical and Nuclear Chemistry - The decomposition of molecular iodine by hydrogen peroxide and sodium hydroxide was kinetically studied in aqueous solutions at ambient...  相似文献   
109.
An approach to the design of nido‐carborane‐based luminescent compounds that can exhibit thermally activated delayed fluorescence (TADF) is proposed. 7,8‐Dicarba‐nido‐undecaboranes (nido‐carboranes) having various 8‐R groups (R=H, Me, i‐Pr, Ph) are appended to the meta or para position of the phenyl ring of the dimesitylphenylborane (PhBMes2) acceptor, forming donor–acceptor compounds (nido‐ m1 – m4 and nido‐ p1 – p4 ). The bulky 8‐R group and meta substitution of the nido‐carborane are essential to attain a highly twisted arrangement between the donor and acceptor moieties, leading to a very small energy splitting between the singlet and triplet excited states (ΔEST <0.05 eV for nido‐ m2 , ‐ m3 , and ‐ p3 ). These compounds exhibit efficient TADF with microsecond‐range lifetimes. In particular, nido‐ m2 and ‐ m3 display aggregation‐induced emission (AIE) with TADF properties.  相似文献   
110.
t-Butoxy derivatives of DIBALH [lithium diisobutyl-t-butoxyaluminum hydride (LDBBA), sodium diisobutyl-t-butoxyaluminum hydride (SDBBA), and potassium diisobutyl-t-butoxyaluminum hydride (PDBBA)] were examined as chemoselective reducing agents of carbonyl compounds. Among them, PDBBA was found to be the most efficient for the reduction of aldehydes and ketones to the corresponding alcohols in the presence of ester, amide, and nitrile substituents at ambient temperature. In addition, the optimal conditions gave higher chemoselectivity for aldehydes in the presence of ketones.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号