首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C, N codoped TiO2 catalyst has been synthesized by thermal decomposition of a novel water-soluble titanium complex. The structure, morphology, and optical properties of the synthesized TiO2 catalyst were characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and UV–vis diffuse reflectance spectroscopy. The photocatalytic activity of the Pt deposited TiO2 catalysts synthesized at different temperatures was evaluated by means of hydrogen evolution reaction under both UV–vis and visible light irradiation. The investigation results reveal that the photocatalytic H2 evolution rate strongly depended on the crystalline grain size as well as specific surface area of the synthesized catalyst. Our studies successfully demonstrate a simple method for the synthesis of visible-light responsive Pt deposited TiO2 catalyst for solar hydrogen production.  相似文献   

2.
We describe here a one-pot synthesis of 13 spirooxindole-fused pyrazolo pyridine derivatives using NiO–SiO2 catalyst via three-component reaction of isatin, 5-amino-3-methylpyrazole, and malononitrile. This multicomponent one-pot protocol also features shorter reaction time, good yield, and simple work-up using a recoverable and reusable solid acid heterogeneous catalyst. The NiO–SiO2 catalyst was characterized using different instrumental techniques such as X-ray diffraction study, surface area analysis, transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, UV-DRS (diffuse reflectance spectroscopy), and energy dispersive X-ray analysis (EDX). The new compounds were tested for in-vitro anti-microbial activity.  相似文献   

3.
Immobilization of metal ions onto inorganic supports has very interesting biological, industrial, and catalysis applications. In this study, CoFe2O4@SiO2@PUF@Zn(OAc)2 nanostructure was successfully fabricated by immobilization of zinc acetate on the surface of poly(urea-formaldehyde) supported on magnetic CoFe2O4@SiO2 nanoparticles through a layer-by-layer assembly. The structure of hybrid nanoparticles was characterized by Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, energy-dispersive X-ray spectroscopy, inductively coupled plasma atomic emission spectroscopy, vibrating sample magnetometry, Brunauer–Emmett–Teller surface area analysis, scanning electron microscopy, and transmission electron microscopy. Zinc-poly(urea-formaldehyde) supported on magnetic nanoparticles (MNPs@SiO2@PUF@Zn) was successfully used for the synthesis of spirooxindolopyran and spirooxindoloxanthene derivatives in aqueous medium as an environmentally benign condition. High yields, short reaction times, green solvent, reusability without significant reduction in catalytic activity, and simple separation of the catalyst using an external magnet along with environmental compatibility are some benefits of this procedure.  相似文献   

4.
A new nano-magnetic core–shell Fe3O4@quillaja sapogenin/Ni (II) was synthesized and characterized thoroughly using various tests including energy-dispersive X-ray spectroscopy (EDS), Brunauer–Emmett–Teller (BET), thermo-gravimetric analysis (TGA), high-resolution transmission electron microscopy (HR-TEM), vibrating sample magnetometer (VSM), Fourier transform infrared (FT-IR) spectroscopy, inductively coupled plasma (ICP), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The achievements demonstrated that the proposed agents were beneficial to synthesis the derivatives of β-aminoketone. Moreover, it was possible to recover the catalyst by means of simple magnetic decantation quickly. Besides, no reduction in the activity of the catalyst occurred, even though it was utilized in various reactions.  相似文献   

5.
The magnetic biocompatible rod-like ZnS/CuFe2O4/agar organometallic hybrid catalyst was designed and prepared based on a natural macromolecule (agar) through a green and convenient method using inexpensive, nontoxic, and easily available substances. Then, the as-prepared catalyst was characterized by several techniques such as Fourier transform-infrared spectroscopy, energy-dispersive X-ray analysis, scanning electron microscopy image, transmission electron microscopy, vibrating sample magnetometry curve, X-ray diffraction pattern, and thermogravimetric analysis. Eventually, the catalytic application of the ZnS/CuFe2O4/agar nanobiocomposite was assessed in sequential Knoevenagel condensation–Michael addition reaction of dimedone, malononitrile, and different substituted aromatic aldehydes for the synthesis of 2-amino-tetrahydro-4H-chromene-3-carbonitrile derivatives. Some notable strengths of this environmentally benign catalyst include simplicity of catalyst preparation and separation, affording desired products with satisfactory yields (81%–97%) in very short reaction times (3–18 min), and with no need for complicated work-up processes. Experimental tests showed that the catalyst can be successfully reused after five sequential runs without significant reduction in its catalytic efficiency.  相似文献   

6.
In this work, trisaminomethane–cobalt complex immobilized onto the surface of Fe3O4 magnetic nanoparticles was successfully prepared via a simple and inexpensive procedure. The prepared nanocatalyst was considered a robust and clean nanoreactor catalyst for the oxidation and synthesis of sulfides under green conditions. This ecofriendly heterogeneous catalyst was characterized by Fourier transform infrared spectroscopy, X-ray diffractometry, energy-dispersive X-ray spectroscopy, inductively coupled plasma-atomic emission spectroscopy, thermogravimetric analysis, vibrating sample magnetometry, X-ray mapping, scanning electron microscopy, and transmission electron microscopy techniques. Use of green medium, easy separation and workup, excellent reusability of the nanocatalyst, and short reaction time are some outstanding advantages of this method.  相似文献   

7.
A novel Cu0.5Co0.5Fe2O4@Arg–GO catalytic system was successfully prepared by immobilization of copper substituted cobalt ferrite nanoparticles on arginine–grafted graphene oxide nanosheets, in which ferrite moiety acts as an oxidation catalyst and arginine has the role of base catalyst. Also, arginine amino acid was used to modify the surface of graphene oxide nanosheets which the prepared support can improve dispersion and uniform loading of nanoparticles. The prepared nanocomposite was characterized by flame atomic absorption spectroscopy (FAAS), inductively coupled plasma optical emission spectrometer (ICP–OES), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT–IR), ultraviolet–visible spectroscopy (UV–vis), Raman spectroscopy, thermogravimetric analysis (TGA), x–ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analysis. The prepared Cu0.5Co0.5Fe2O4@Arg–GO nanocomposite was used as an efficient catalyst for one–pot tandem oxidative synthesis of 2–phenylbenzimidazole derivatives in good yields.  相似文献   

8.
Cu(II) Schiff base complex supported on Fe3O4@SiO2 nanoparticles was employed as a magnetic nanocatalyst (nanocomposite) with a phase transfer functionality for the one-pot preparation of α-aminonitriles (Strecker reaction). The desired α-aminonitriles were obtained from the reaction of aromatic or aliphatic aldehydes, aniline or benzyl amine, NaCN, and 1.6 mol% of the catalyst in water at room temperature and good to excellent yields were obtained for all substrates. The catalyst was characterized analytically and instrumentally including Fourier-transform infrared spectroscopy, X-ray diffraction, thermogravimetric, nuclear magnetic resonance, energy-dispersive X-ray spectroscopy, inductively coupled plasma spectroscopy, vibrating-sample magnetometry analysis, dynamic light scattering, Brunauer–Emmett–Teller surface area, field emission scanning electron microscopy, and transmission electron microscopy analyses. The reaction mechanism was investigated, in which the performance of the catalyst as a phase transition factor seems to be probable. The catalyst showed high activity, high turnover frequency (TOF)s, significant selectivity, and fast performance toward the Strecker synthesis. The nanocatalyst can be readily and quickly separated from the reaction mixture with an external magnet and can be reused for at least seven successive reaction cycles without significant reduction in efficiency.  相似文献   

9.
One-pot synthesis of substituted chromeno[3,4-b]quinoline derivatives was developed by three-component reaction of aldehydes, dimedone or 1,3-cyclohexadione, and 4-aminocoumarin in the presence of nicotinic acid-supported cobalt ferrite [CoFe2O4@SiO2@Si(CH2)3Cl@NA] as a novel magnetic catalyst in chloroform at reflux conditions. Nicotinic acid-supported cobalt ferrite was characterized via Fourier transform infrared spectroscopy, X-ray diffraction, thermal gravimetric analysis, scanning electron microscopy, high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, and vibrating sample magnetometry. Moreover, the catalyst could be easily recovered by magnetic separation and recycled up to five times without significant loss of its catalytic activity. The products formed in excellent yields over appropriate reaction times under environmentally friendly conditions. High efficiency and easy isolation of the catalyst from products by simple magnetic attraction are some of the considerable advantages of this procedure.  相似文献   

10.
The magnetically recyclable graphene oxide-Fe3O4/polyallylamine (PAA)/Ag nanocatalyst was prepared via a green route using Eucalyptus comadulensis leaves extract as both reducing and stabilizing agent. The catalytic activity of this nanocatalyst was investigated for the reduction reaction of methylene blue and methyl orange in the presence of NaBH4 in aqueous medium at room temperature. The prepared nanocatalyst was characterized by different methods such as Fourier transformed infrared spectroscopy, X-ray diffraction, scanning electron microscopy–energy dispersive X–ray spectroscopy, thermogravimetric analysis, vibrating sample magnetometer, transmission electron microscopy, and UV–visible spectroscopy. The results show that graphene oxide/PAA/Ag nanocatalyst has good activity and recyclability, and can be reused several times without major loss of activity in the reduction process. The apparent rate constants of the methyl orange (MO) and methylene blue (MB) were calculated to be 0.077 s−1 (3 mg of catalyst) and 0.15 s−1 (2 mg of catalyst), respectively.  相似文献   

11.
We report a highly efficient and recyclable heterogeneous zinc catalytic system via covalent immobilization of 2-hydroxyacetophenone (2-HAP) onto an amine functionalized silica gel followed by metallation with zinc chloride and its catalytic application in three component click synthesis of 1,4-disubstituted 1,2,3-triazoles. The structure of the synthesized organic–inorganic hybrid material (SiO2@APTES@2HAP-Zn) has been confirmed by various physicochemical characterization techniques, such as solid-state 13C CPMAS NMR spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction analysis (XRD), Brunauer–Emmett–Teller (BET) surface area analysis, scanning electron microscopy (SEM), atomic absorption spectroscopy (AAS), energy-dispersive X-ray fluorescence spectroscopy (ED-XRF), and elemental analysis. The newly designed catalyst works under mild reaction conditions and also exhibits excellent performance in terms of good product yield and high turnover number (TON). One of the most important attributes of the present methodology is that the catalyst can be recycled several times without appreciable loss in its activity as proved by FTIR spectroscopy and SEM analysis. Besides, the heterogeneity test also confirms that no leaching of active catalytic species occurs from the silica supported zinc catalyst which confirms its remarkable structural stability under the reaction conditions.  相似文献   

12.
A general method for the synthesis of palladium nanoparticles loaded on reduced graphene oxide functionalized with diethylenetriamine (PdNPs/rGO-NH2) using a sonochemical procedure is described. The heterogeneous nanocomposite was characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray, thermogravimetric analysis, high-angle annular dark field scanning transmission electron microscopy, X-ray photoelectron spectroscopy, UV–visible absorption, and inductively coupled plasma optical emission spectrometry. The PdNPs/rGO-NH2 was very effective for the Mizoroki–Heck coupling reaction of several aryl iodide compounds with different alkenes in the presence of triethylamine. The reaction provides the coupling products in good to excellent yields (59–100%). Additionally, the PdNPs/rGO-NH2 catalyst can be reutilized for six successive runs without any apparent diminution of its catalytic reactivity.  相似文献   

13.
以共沉淀法所制的工业铁硅球体催化剂(indus-FS)为原料,用改进的有机胺蒸气相传输转化法,得到了负载高分散铁的交织氧化硅纳米线球体催化剂(NW-FS),并用于费托合成反应.在所制纳米线催化剂中,原料催化剂中氧化硅在氧化铁诱导下成功地转变成纳米线交织微球载体,而氧化铁组分则高度分散在氧化硅纳米线上.用扫描电镜、透射电镜、X射线衍射、低温氮吸附、X射线光电子能谱和程序升温还原等方法对所得纳米线催化剂进行了表征.在费托合成中,纳米线铁硅催化剂由于其特殊的堆积结构所导致的低的扩散阻力和高的铁活性组分分散度,提高了低碳烯烃尤其是乙烯的选择性.纳米线铁硅催化剂上低碳产物(C2–C4)的烯烷比为3.3,高于母体工业催化剂的1.9.  相似文献   

14.
Herein, one-pot synthesis of pyrimido[4,5-b]quinoline and indenopyrido[2,3-d]pyrimidine derivatives was developed by the three-component reaction of aldehydes, 6-amino-1,3-dimethyluracil, and 1,3-dicarbonyl compounds in the presence of glycolic acid-supported cobalt ferrite CoFe2O4@SiO2@Si (CH2)3NHCOOCH2COOH as a novel magnetic catalyst in ethanol at reflux conditions. Glycolic acid-supported cobalt ferrite was characterized via Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and vibrating sample magnetometer (VSM). Moreover, the catalyst was easily recovered with magnetic separation and recycled at least for five times without significant loss of its catalytic activity. The products were formed in excellent yields over appropriate reaction times under environmentally friendly conditions. The high efficiency and easy isolation of catalyst from products with an external permanent magnet are some of the remarkable advantages of this method.  相似文献   

15.
In this research study we designed and synthesized CoII(macrocyclic Schiff base ligand containing 1,4-diazepane) immobilized on Fe3O4 nanoparticles as a novel, recyclable, and heterogeneous catalyst. The nanomaterial was fully characterized using various techniques such as Fourier-transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, energy-dispersiveX-ray spectroscopy, thermogravimetric analysis, vibrating sample magnetometry, differential reflectance spectroscopy, Brunauere–Emmette–Teller method, inductively coupled plasma, and elemental analysis (CHNS). Then, the catalytic performance was successfully investigated in the multicomponent synthesis of 2-amino-4-aryl-6-(phenylsulfanyl)pyridine-3,5-dicarbonitrile and 2-amino-5,10-dioxo-4-aryl-5,10-dihydro-4H-benzo[g]chromene-3-carbonitrile derivatives. Furthermore, the catalyst was isolated using a simple filtration, and recovery of the nanocatalyst was demonstrated five times without any loss of activity.  相似文献   

16.
In this study, a novel, green, environmentally friendly and magnetically heterogeneous catalyst based on the immobilization of sulfosalicylic acid onto Fe3O4 nanoparticles (Fe3O4@sulfosalicylic acid MNPs) is reported. The bis-coumarin analogs were synthesized in high yield using the reaction of 1 equivalent of aryl aldehydes with 2 equivalents of 4-hydroxycoumarin in water under microwave irradiation conditions. Scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, thermogravimetric analysis, dynamic light scattering, vibrating sample magnetometry, Fourier transform infrared spectroscopy, UV–visible absorption, and Brunauer-Emmett-Teller (BET) techniques confirmed the successful synthesis of the catalyst. The main attractive characteristics of the presented green protocol are very short reaction times (10–15 min), excellent yields, and the avoidance of hazardous or toxic reagent and solvents. Thermal durability, easy separation, and high reusability are important advantages of the new catalyst in comparison to other catalysts.  相似文献   

17.
By the reaction of 4-chlorobenzaldehyde with ethyl acetoacetate, malononitrile, and hydrazine hydrate, 6-amino-4-(4-chlorophenyl)-3-methyl-2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile was prepared and then reacted with salicylaldehyde and CoCl2·6H2O to produce nano-Co-[4-cholorophenyl-salicylaldimine-methylpyranopyrazole]Cl2 (nano-[Co-4CSMP]Cl2). The prepared nano-Schiff base complex was reported for the first time and fully characterized by Fourier transform-infrared spectroscopy, thermal gravimetric analysis, differential thermal gravimetric analysis, scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, and Brunner–Emmett–Teller analyses and applied as an efficient catalyst for the synthesis of some 1-amidoalkyl-2-naphthol derivatives.  相似文献   

18.
Novel and powerful fibroin-functionalized magnetic carbon nanotube–supported silver nanoparticles (CNT–Fe3O4–fibroin–Ag) were successfully synthesized as a nontoxic and inexpensive biocatalyst. The structure of the organic–inorganic hybrid bionanocomposite was characterized by various techniques such as Fourier transform infrared spectroscopy, thermogravimetric analysis, energy-dispersive X-ray, field emission-scanning electron microscopy, transmission electron microscopy, X-ray diffraction, vibrating sample magnetometry, atomic absorption spectroscopy, and inductively coupled plasma-optical emission spectrometry. Then, the catalytic activity of synthesized bionanocomposite was evaluated in the three-component A3 coupling reaction under solvent-free conditions with good to excellent yields. Several propargylamine derivatives were synthesized by the reaction of different aldehydes with amines and phenylacetylene. Biodegradability, biocompatibility, availability, easy synthesis, high stability, high-throughput, cost-effectiveness, and efficient magnetic separation are some advantages of this catalyst that make it economically justified and sustainable. Moreover, the catalyst can be recycled for several runs without appreciable loss in its catalytic activity.  相似文献   

19.
Fe3O4 nanoparticles were prepared and decorated on the surface of nanobentonite (NB), and subsequently modified by the organic and inorganic linkers and then sulfonic acid immobilization on the nanoparticles. The NB-Fe3O4@SiO2@CPTMO@DEA-SO3H catalyst was characterized via Fourier transform-infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, vibrating-sample magnetometer, X-ray diffraction patterns, Brunauer–Emmett–Teller and thermal gravimetric analysis. The new catalyst benefits from a simple preparation method, and environmentally friendly and high magnetic properties of the nanocatalyst, Accordingly, we used it for the synthesis of dihydropyrano[2,3c]pyrazole derivatives in water and ethanol mixture as a green solvent under reflux conditions. Use of mild conditions, easy catalyst separation, cost-effectiveness, short reaction time, reusability of the catalyst, excellent yield and easy work-up are the main advantages of the present method.  相似文献   

20.
A simple, efficient, and facile heterogeneous multi-walled carbon nanotubes-zirconia nanocomposite (MWCNTs-ZrO2) has been synthesized using natural feedstock coconut juice (água-de-coco do Ceará). The synthesized catalyst was characterized by Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, and X-ray photoelectron spectroscopy analysis. The heterogeneous nanocomposite has been used for one-pot synthesis of various N-heterocyclic compounds like pyrazoles, 1,2-disubstituted benzimidazoles, 2-arylbenzazoles, and 2,3-dihydroquinazolin-4(1H)-ones under green reaction medium at room temperature. This novel method has several advantages, such as short reaction time, simple work-up, excellent yield, and green reaction conditions. The catalyst was recycled up to four times without significant loss in catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号