首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   369篇
  免费   17篇
  国内免费   4篇
化学   224篇
晶体学   2篇
力学   50篇
数学   37篇
物理学   77篇
  2024年   1篇
  2023年   2篇
  2022年   12篇
  2021年   18篇
  2020年   21篇
  2019年   30篇
  2018年   29篇
  2017年   26篇
  2016年   17篇
  2015年   17篇
  2014年   29篇
  2013年   30篇
  2012年   43篇
  2011年   39篇
  2010年   19篇
  2009年   12篇
  2008年   12篇
  2007年   13篇
  2006年   4篇
  2005年   2篇
  2004年   5篇
  2003年   3篇
  2002年   1篇
  1996年   3篇
  1970年   1篇
  1968年   1篇
排序方式: 共有390条查询结果,搜索用时 562 毫秒
41.
In this study, maghemite (γ‐Fe2O3) nanoparticles were initially synthesized via chemical co‐precipitation and then deposited by spray pyrolysis as thin films on white glass substrates. The thin films were annealed for 8 h at 400, 450, 500, 550, and 600 °C in an oven. The structural studies of maghemite nanoparticles were carried out using X‐ray diffractometer. Structural properties that we investigated by X‐ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, SEM, and Energy dispersive X‐ray analysis (EDS). Optical properties of the samples were also investigated by ultraviolet‐visible (UV–vis) spectroscopy. The results showed that maghemite nanoparticles have crystalline structure with domain that increases in size with increasing annealing temperature. The optical band gap values were found to reduce from 2.9 to 2.4 eV with increase in annealing temperature. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
42.
Dielectric metasurfaces are two‐dimensional structures composed of nano‐scatterers that manipulate the phase and polarization of optical waves with subwavelength spatial resolution, thus enabling ultra‐thin components for free‐space optics. While high performance devices with various functionalities, including some that are difficult to achieve using conventional optical setups have been shown, most demonstrated components have fixed parameters. Here, we demonstrate highly tunable dielectric metasurface devices based on subwavelength thick silicon nano‐posts encapsulated in a thin transparent elastic polymer. As proof of concept, we demonstrate a metasurface microlens operating at 915 nm, with focal distance tuning from 600 μm to 1400 μm (over 952 diopters change in optical power) through radial strain, while maintaining a diffraction limited focus and a focusing efficiency above 50%. The demonstrated tunable metasurface concept is highly versatile for developing ultra‐slim, multi‐functional and tunable optical devices with widespread applications ranging from consumer electronics to medical devices and optical communications.

  相似文献   

43.
Composite membranes based on polyvinyl chloride and acrylonitrile butadiene styrene (ABS) copolymer have been prepared and then filled with 2–8 wt % of silica nanoparticles. Membranes were fabricated by solution casting method using dimethylacetamide. The performance of prepared membranes were studied for methane and ethane at the feed pressure of 1.0, 1.5, 2.0, and 3.0 bar at 35°C. By increasing the percentage of ABS, permeability of methane and ethane increased. In addition, by adding the silica nanoparticles in the membrane, permeability of gas increased in all cases. The highest gas pair selectivity for C2H6/CH4 could be obtained from PVC/BS (20 wt %) which loaded with 8 wt % of silica nanoparticles. The results of this study suggest that high performance gas separation nanocomposite membranes can be attained by adopting a judicious combination of blending technique for polymeric membrane, optimized loading percentage, and feed operating conditions.  相似文献   
44.
Imidoyl chlorides, generated from isocyanides and acyl chlorides, react with trialkyl phosphites, in a Perkow‐type reaction, to afford 3‐(alkylimino)‐2‐[(dialkyloxyphosphoryl)oxy]acrylates, which undergo a smooth reaction with tosylmethyl isocyanide (TsMIC) to furnish 4‐(alkylamino)‐3‐[(dialkyloxyphosphoryl)oxy]‐5‐[(4‐methylphenyl)sulfonyl]‐3H‐pyrrole‐3‐carboxylates in moderate‐to‐good yields.  相似文献   
45.
A theoretical study of the thermal decomposition kinetics of ethane halides(C2H6-nXn(n = 1~3);X = F,Cl,Br) has been carried out at the B3LYP/6-31++G** and B3PW91/631++G** levels of theory.Among these methods and comparison of activation parameters with available experimental values,the B3PW91/6-31++G** method is in good agreement with the experimental data.The analysis of bond order and natural bond orbital(NBO) charges,bond indexes,and synchronicity parameters suggest the elimination of HX in reactions 1~9(HF:compounds 1~3,HCl:compounds 4~6,and HBr:compounds 7~9) occur through a concerted and slightly asynchronous four-membered cyclic transition state type of mechanism.  相似文献   
46.
The possibility of fabricating carbon nanofibers from cellulose nanofibers was investigated. Cellulose nanofiber of ~50 nm in diameter was produced using ball milling in an eco-friendly manner. The effect of the drying techniques of cellulose nanofibers on the morphology of carbon residue was studied. After pyrolysis of freeze-dried cellulose nanofibers below 600 °C, amorphous carbon fibers of ~20 nm in diameter were obtained. The pyrolysis of oven-dried precursors resulted in the loss of original fibrous structures. The different results arising from the two drying techniques are attributed to the difference in the spatial distance between cellulose nanofiber precursors.  相似文献   
47.
A local herb, Kacip Fatimah, is famous amongst Malay women for its uses in parturition; however, its phytochemical contents have not been fully documented. Therefore, a study was performed to evaluate the phenolics, flavonoids, and total saponin contents, and antibacterial and antifungal properties of the leaf, stem and root of three varieties of Labisia pumila Benth. Total saponins were found to be higher in the leaves of all three varieties, compared to the roots and stems. Leaves of var. pumila exhibited significantly higher total saponin content than var. alata and lanceolata, with values of 56.4, 43.6 and 42.3 mg diosgenin equivalent/g dry weight, respectively. HPLC analyses of phenolics and flavonoids in all three varieties revealed the presence of gallic acid, caffeic acid, rutin, and myricetin in all plant parts. Higher levels of flavonoids (rutin, quercitin, kaempferol) were observed in var. pumila compared with alata and lanceolata, whereas higher accumulation of phenolics (gallic acid, pyrogallol) was recorded in var. alata, followed by pumila and lanceolata. Antibacterial activities of leaf, stem and root extracts of all varieties determined against both Gram positive (Micrococcus luteus, Bacillus subtilis B145, Bacillus cereus B43, Staphylococcus aureus S1431) and Gram negative (Enterobacter aerogenes, Klebsiella pneumonia K36, Escherichia coli E256, Pseudomonas aeruginosa PI96) pathogens showed that crude methanolic extracts are active against these bacteria at low concentrations, albeit with lower antibacterial activity compared to kanamycin used as the control. Antifungal activity of methanolic extracts of all plant parts against Fusarium sp., Candida sp. and Mucor using the agar diffusion disc exhibited moderate to appreciable antifungal activities compared to streptomycin used as positive control.  相似文献   
48.
Thermal conductivity of α-Al2O3 was measured using hot wire method. α-Al2O3 (20 nm in size) was synthesized by microwave method for which, the results were compared with commercially available γ-Al2O3. Thermal conductivity of nanofluids was investigated considering, it is dependency on Al2O3 phase. It was observed that by adding 3 wt% of nano γ-Al2O3 and α-Al2O3 to the engine oil, thermal conductivity increases by 37 and 31%, respectively. The corresponding viscosity increase for the same amount of nano γ-Al2O3 and α-Al2O3 were 36 and 38%, respectively. It was concluded that the differences in thermal conductivity originate from higher specific surface area of γ-Al2O3 compared to the α-Al2O3 which is the result of porosity difference, obtained during the synthesis process.  相似文献   
49.
In the present study the effects of surface tension on the growth and collapse stages of cavitation bubbles are studied individually for both spherical and nonspherical bubbles. The Gilmore equation is used to simulate the spherical bubble dynamics by considering mass diffusion and heat transfer. For the collapse stage near a rigid boundary, the Navier–Stokes and energy equations are used to simulate the flow domain, and the VOF method is adopted to track the interface between the gas and the liquid phases. Simulations are divided into two cases. In the first case, the collapse stage alone is considered in both spherical and nonspherical situations with different conditions of bubble radius and surface tension. According to the results, surface tension has no significant effects on the flow pattern and collapse rate. In the second case, both the growth and collapse stages of bubbles with different initial radii and surface tensions are considered. In this case surface tension affects the growth stage considerably and, as a result, the jet velocity and collapse time decrease with increasing surface tension coefficient. This effect is more significant for bubbles with smaller radii.  相似文献   
50.
Ahmadpour  Ali  Amani  Ehsan  Mashayekhi  Alireza  Soleimani  Mehran 《Meccanica》2021,56(11):2755-2776
Meccanica - In the present study, the two-phase gas–liquid convective heat transfer is numerically studied inside uniformly heated wavy micro-tubes in the Taylor flow regime. Both Newtonian...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号