首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22354篇
  免费   4068篇
  国内免费   2936篇
化学   17435篇
晶体学   230篇
力学   1227篇
综合类   209篇
数学   2652篇
物理学   7605篇
  2024年   48篇
  2023年   496篇
  2022年   575篇
  2021年   759篇
  2020年   1094篇
  2019年   1088篇
  2018年   850篇
  2017年   699篇
  2016年   1149篇
  2015年   1168篇
  2014年   1346篇
  2013年   1658篇
  2012年   2028篇
  2011年   2082篇
  2010年   1450篇
  2009年   1330篇
  2008年   1430篇
  2007年   1298篇
  2006年   1189篇
  2005年   1021篇
  2004年   845篇
  2003年   786篇
  2002年   953篇
  2001年   770篇
  2000年   538篇
  1999年   503篇
  1998年   318篇
  1997年   295篇
  1996年   276篇
  1995年   234篇
  1994年   180篇
  1993年   136篇
  1992年   150篇
  1991年   142篇
  1990年   117篇
  1989年   83篇
  1988年   71篇
  1987年   39篇
  1986年   51篇
  1985年   44篇
  1984年   30篇
  1983年   11篇
  1982年   3篇
  1981年   8篇
  1980年   2篇
  1979年   2篇
  1957年   3篇
  1936年   3篇
  1930年   3篇
  1922年   1篇
排序方式: 共有10000条查询结果,搜索用时 140 毫秒
971.
In this study, we demonstrate that an Mn-doped ultrathin Ni-MOF nanosheet array on nickel foam (Mn0.1-Ni-MOF/NF) serves as a highly capacitive and stable supercapacitor positive electrode. The Mn0.1-Ni-MOF/NF shows an areal capacity of 6.48 C cm−2 (specific capacity C: 1178 C g−1) at 2 mA cm−2 in 6.0 m KOH, outperforming most reported MOF-based materials. More importantly, it possesses excellent cycle stability to maintain 80.6 % capacity after 5000 cycles. An asymmetric supercapacitor device utilizing Mn0.1-Ni-MOF/NF as the positive electrode and activated carbon as the negative electrode attains a high energy density of 39.6 Wh kg−1 at 143.8 Wkg−1 power density with a capacitance retention of 83.6 % after 5000 cycles.  相似文献   
972.
Four half‐sandwich rutheniumII (RuII) complexes with triphenylamine‐modifed dipyridine frameworks were synthesized and characterized. The cytotoxicity of target complexes toward A549 (lung cancer cells), HeLa (cervical cancer cells) and HepG2 (hepatoma cells) were obtained by the MTT assay, which were superior to cisplatin with the IC50 values changed from 2.4 ± 0.1 μM to 9.2 ± 2.7 μM. Meanwhile, complexes possess the ability of antimetastasis to cancer cells. RuII complexes could be transported by serum albumin, catalyze the conversion of NADH (the reduced state of nicotinamide‐adenine dinucleotide) to NAD+ and induce the accumulation of reactive oxygen species, which confirmed the antineoplastic mechanism of oxidation. RuII complexes could enter A549 cells followed by a non‐energy dependent cellular uptake mechanism, target lysosomes with the Pearson's colocalization coefficient of 0.75, lead to lysosomal damage, disturb the cell cycle (S phase), and eventually induce apoptosis. The results demonstrate that these RuII complexes are potential anticancer agents with dual functions, including metastasis inhibition and lysosomal damage.  相似文献   
973.
The photoinitiation abilities of three 1,2-diketones [i.e., acenaphthenequinone ( ANPQ ), aceanthrenequinone ( AATQ ), and 9,10-phenanthrenequinone ( PANQ )]-based photoinitiating systems [PISs, with additives such as iodonium salt, N-vinylcarbazole (NVK), tertiary amine, and phenacyl bromide (R-Br)] for cationic photopolymerization and free-radical photopolymerization under the irradiation of ultraviolet (UV; 392 nm) or blue (455 nm) light-emitting diode (LED) bulb are investigated. All 1,2-diketones studied exhibit ground state absorption that match with the emission spectra of UV (392 nm) or blue LED (455 nm) better than that of the well-known blue-light-sensitive photoinitiator camphorquinone (CQ). In particular, AATQ /iodonium salt/NVK can show high photoinitiating ability (with epoxide conversion yield >70%) under the UV light irradiation due to the effect of NVK. In addition, 1,2-diketone/iodonium salt (and optional NVK) systems are capable of initiating free-radical photopolymerization of methacrylates, with conversions of 50–58%. Furthermore, some 1,2-diketone/tertiary amine (and optional R-Br) combinations are found to demonstrate high efficiency to initiate free-radical photopolymerization, and 71% of methacrylate conversion can be achieved with PANQ /tertiary amine/R-Br PIS. Some 1,2-ketone-based PISs can even exhibit higher efficiency than the CQ-based systems. The photochemical mechanism of the radical generation from the 1,2-diketone-based PISs is investigated and found to be consistent with the related photopolymerization efficiency. © 2020 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 792–802  相似文献   
974.
Selective processing of the β-O-4 unit in lignin is essential for the efficient depolymerisation of this biopolymer and therefore its successful integration into a biorefinery set-up. An approach is described in which this unit is modified to incorporate a carboxylic ester with the goal of enabling the use of mild depolymerisation conditions. Inspired by preliminary results using a Cu/TEMPO/O2 system, a protocol was developed that gave the desired β-O-4-containing ester in high yield using certain dimeric model compounds. The optimised reaction conditions were then applied to an oligomeric lignin model system. Extensive 2D NMR analysis demonstrated that analogous chemistry could be achieved with the oligomeric substrate. Mild depolymerisation of the ester-containing oligomer delivered the expected aryl acid monomer.  相似文献   
975.
Dehydration of (S,S)-1,2-bis(1H-benzo[d]imidazol-2-yl)ethane-1,2-diol (H4L) to (Z)-1,2-bis(1H-benzo[d]imidazol-2-yl)ethenol) (H3L′) was found to be metal-assisted, occurs under solvothermal conditions (H2O/CH3OH), and leads to [MnII4(H3L)4Cl2]Cl2 ⋅ 5 H2O ⋅ 5 CH3OH ( Mn4L4 ) and [MnII4(H2L′)63-OH)]Cl ⋅ 4 CH3OH ⋅ H2O ( Mn4L′6 ), respectively. Their structures were determined by single-crystal XRD. Extensive ESI-MS studies on solutions and solids of the reaction led to the proposal consisting of an initial stepwise assembly of Mn4L4 from the reactants via [MnL] and [Mn2L2] below 80 °C, and then disassembly to [MnL] and [MnL2] followed by ligand modification before reassembly to Mn4L′6 via [MnL′], [MnL′2], and [Mn2L′3] with increasing solvothermal temperature up to 140 °C. Identification of intermediates [Mn4LxL′6−x] (x=5, 4, 3, 2, 1) in the process further suggested an assembly/disassembly/in situ reaction/reassembly transformation mechanism. These results not only reveal that multiple phase transformations are possible even though they were not realized in the crystalline state, but also help to better understand the complex transformation process between coordination clusters during “black-box” reactions.  相似文献   
976.
A series of chemical vapor deposition (CVD) precursors have been synthesized by a single-step reaction of 1,1,3,3-tetramethylguanidine and a variety of silicon chlorides. The structures of the 1,1,3,3-tetramethylguanidinate-based compounds were verified by 1H NMR, 13C NMR, XPS, EI-MS, and elemental analysis. The thermal stability, transport behavior, and vapor pressures of these compounds were evaluated by simultaneous thermal analyses (STA). These compounds are highly stable and those in liquid form are very volatile. Silicon carbonitride (SiCN) thin films were prepared by using bis (tetramethylguanidine)-dimethyl-silane as the precursor in helicon wave plasma chemical vapor deposition (HWP-CVD). The properties of the films were investigated by SEM, AFM, and XPS. The results showed that the films have good uniformities, low friction coefficient, and high hardness, enabling the films for fabrication of semiconductor devices.  相似文献   
977.
Pitch has been used to prepare electrodes by high-temperature heat treatments for supercapacitors, lithium-ion batteries, on account of its rich aromatic ring structure. Here, the toluene-soluble component of pitch is used to prepare a kind of laminated carbon. This was realized by a template-free synthesis at low temperature with the addition of pressure. The toluene-soluble component has a small molecular weight, which makes the thermal deformation ability stronger and then enhances the orientation of the carbon layer with the help of pressure. The prepared anode exhibits a splendid electrochemical performance compared with the traditional graphite anode. A high stable capacity of approximately 550 mAh g−1 at 50 mA g−1, which is much higher than graphite (372 mAh g−1), is obtained. Also, when the current density is up to 2 A g−1, the capacity is about 150 mAh g−1. Surprisingly, it also delivers a superior cycling performance. And when used as the anode/cathode electrode for lithium-ion capacitors, a high energy density can be obtained. The present work offers an opportunity to utilize the pitch source in lithium energy storage with promising cycle life, high energy/power density, and low cost.  相似文献   
978.
Herein we describe a reaction of ortho‐carbonylated alkynyl‐substituted arylaldehydes with common primary amines that can provide functionalized isoindolinone and 3‐hydroxylindenamine products in high yields. Depending on the substituent size of primary amines, two distinct reaction pathways were exploited selectively, that are, an initial aza‐conjugate addition followed by hydrogen transfer to access isoindolinone framework and a unique oxa‐conjugate addition followed by Petasis–Ferrier rearrangement to afford indenamine derivatives. In the presence of Et3N, the reaction property of small primary amines was changed, proceeding to afford 3‐hydroxylindenamine derivatives efficiently. These products contain interesting substructures that exist in many natural products and bioactive molecules. The reaction features contain the use of transition‐metal‐free catalysts, simple operation, broad substrate scope, and product diversity.  相似文献   
979.
980.
Well‐defined star‐shaped hydrophobic poly(ε‐caprolactone) (PCL) and hydrophilic poly(ethylene glycol) (PEG) amphiphilic conetworks (APCNs) have been synthesized via the combination of ring opening polymerization (ROP) and click chemistry. Alkyne‐terminated six arm star‐shaped PCL (6‐s‐PCLx‐C?CH) and azido‐terminated PEG (N3‐PEG‐N3) are characterized by 1H NMR and FT‐IR. The swelling degree of the APCNs is determined both in water and organic solvent. This unique property of the conetworks is dependent on the nanophase separation of hydrophilic and hydrophobic phases. The morphology and thermal behaviors of the APCNs are investigated by SEM and DSC respectively. The biocompatibility is determined by water soluble tetrazolium salt reagents (WST‐1) assay, which shows the new polymer networks had good biocompatibility. Through in vitro release of paclitaxel (PTX) and doxorubicin (DOX), the APCNs is confirmed to be promising drug depot materials for sustained hydrophobic and hydrophilic drugs. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 407–417  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号