首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1058篇
  免费   206篇
  国内免费   331篇
化学   731篇
晶体学   41篇
力学   46篇
综合类   40篇
数学   234篇
物理学   503篇
  2024年   2篇
  2023年   2篇
  2022年   38篇
  2021年   24篇
  2020年   24篇
  2019年   27篇
  2018年   28篇
  2017年   49篇
  2016年   30篇
  2015年   39篇
  2014年   61篇
  2013年   78篇
  2012年   83篇
  2011年   87篇
  2010年   77篇
  2009年   101篇
  2008年   85篇
  2007年   89篇
  2006年   94篇
  2005年   74篇
  2004年   70篇
  2003年   56篇
  2002年   56篇
  2001年   55篇
  2000年   55篇
  1999年   36篇
  1998年   11篇
  1997年   10篇
  1996年   18篇
  1995年   26篇
  1994年   11篇
  1993年   19篇
  1992年   12篇
  1991年   12篇
  1990年   8篇
  1989年   2篇
  1988年   10篇
  1987年   9篇
  1986年   5篇
  1984年   4篇
  1983年   4篇
  1982年   1篇
  1981年   3篇
  1980年   6篇
  1979年   2篇
  1976年   1篇
  1957年   1篇
排序方式: 共有1595条查询结果,搜索用时 203 毫秒
51.
The photophysical processes of 4-formacyl-triphenylamine (FTA) and 4,4'-bisformacyl-triphenyl-amine (BTA) have been studied. The fluorescences of FTA and BTA with donor (triamine) and acceptor (formacyl) moieties show the twisted intramolecular charge transfer (TICT) emission in polar solvents and photoinduced charge transfer (ICT) emission in nonpolar solvents. These could be supported by the solvent effect, temperature effect and the quenching process by strong electron-deficient compounds.  相似文献   
52.
X-射线衍射法测定尼龙1010结晶度   总被引:1,自引:0,他引:1  
根据X-射线散射强度理论,使用图解多重峰方法对尼龙1010三个结晶峰及非晶峰的衍射强度进行校正,首次导出了尼龙1010结晶度计算公式,所得结果与密度及量热测定结果具有很好可比性。  相似文献   
53.
研究了在甲醇、乙醇温和溶液中,氧化羰化一步合成不对称碳酸甲乙酯(MEC)反应。通过热力学计算考察了反应的可行性及程度。计算结果表明,在298.2K下主反应平衡常数为2.39×1080,说明此反应的可行性和程度均很大。实验发现在氧化羰化合成碳酸甲乙酯的过程中,不仅存在氧化羰化过程,同时也存在酯交换过程;含氮席夫碱(Schiff)的种类,甲醇和乙醇相对用量,反应温度和压力对碳酸甲乙酯(MEC)的合成均有影响。当以氯化亚铜(CuCl) 1,10 菲罗啉(phen) N 甲基咪唑(NMI)为催化剂时,摩尔比n(CuCl)∶n(NMI)∶n(phen)=1∶1.25∶1.25,在393K,2.4MPa,VMeOH∶VEtOH=2∶8,CuCl浓度为0.20mol L的条件下,反应2h,甲醇的转化率为44.3%,乙醇的转化率为22.3%,MEC产率为10.4%。与单纯CuCl催化剂相比,甲醇和乙醇的转化率分别提高17倍和9倍,MEC产率提高74倍。对氧化羰化反应机理也进行了探讨。  相似文献   
54.
研究了咪唑及其衍生物配合CuCl对甲醇液相氧化羰化合成碳酸二甲酯的催化性能。筛选出溶解性好、腐蚀性小且催化活性高的多功能助催剂。实验结果表明,反应体系中加入N-甲基咪唑后,CuCl可以完全溶解。当催化剂的浓度为0.2 mol/L, N-甲基咪唑与CuCl的量为4∶1,反应温度为120 ℃,反应压力为2.40 MPa,CO与O2的进气比2∶1,反应3 h的条件下甲醇的摩尔转化率为15.4%,选择性为98%以上。从腐蚀性试验结果看,50 ℃时,加入N-甲基咪唑化合物后,Q235钢在CuCl/CH3OH/H2O/CO/O2体系中的腐蚀速率为0.22mm/a,缓蚀效率为94.5%。动力学研究表明,反应近似为一级,加入N-甲基咪唑后,反应速率常数为0.15 min-1。  相似文献   
55.
本文分别用混酸水热法(HT)和混酸冷凝回流法(RF)对Vulcan XC-72R碳黑进行预处理,并进一步研究其作为Pt/C催化剂载体的性能。循环伏安实验发现,采用HT法、RF法和未预处理的碳黑作为载体的Pt/C催化剂电催化甲醇氧化的比质量活性(正扫峰电流)分别为1055、704和395 mA/mgpt,即采用HT法预处理碳载体的Pt/C催化剂具有最高的电催化活性,而且计时电流实验也表现出最好的稳定性。实验结果表明,碳载体的预处理方法对制得的Pt/C催化剂的性能具有关键性的影响,且水热法是一种效果较好的预处理碳载体的方法。  相似文献   
56.
考虑一类"中度偏离"单位根过程,y_t=q_ny_t-1+u_t,其中qn=1+c/(k_n),k_n=o(n),c为一非零常数,{u_t}为随机扰动项序列.在允许扰动项方差无穷的条件下,构造q_n的复合分位数估计,并得到了该估计的渐近分布.最后通过数值模拟,在扰动项服从t(2)分布下,说明了该估计的稳健和有效性.  相似文献   
57.
采用联苯二酐与3种含酰胺结构二胺制备了具有不同取代基团的聚酰胺-酰亚胺薄膜, 考察了酰胺结构对薄膜力学、 耐热及尺寸稳定性的影响, 研究了聚集态结构与薄膜热膨胀行为的关系和规律. 该系列薄膜具有超高强度和优异的耐热性能, 拉伸强度高达280.5 MPa, 玻璃化转变温度在389~409 ℃, 并在30~300 ℃温度范围内表现出超低负膨胀, 热膨胀系数(CTE, ppm/℃, 即10 6 cm·cm -1·℃ -1)在-3.05~-1.74 ppm/℃之间. 聚集态分析结果表明, 酰胺结构使分子链间形成了强氢键相互作用, 分子链在薄膜面内方向高度有序取向, 并在膜厚方向堆积更为紧密, 使薄膜表现出热收缩现象. 通过不同体积大小的取代基团进一步调控分子链间相互作用及排列堆积, 可实现薄膜在高温下近乎零尺寸形变, 为设计制备超低膨胀聚合物基板材料提供了新思路.  相似文献   
58.
莫康信  苏佳佳 《计算物理》2019,36(3):335-341
采用局域Monte Carlo方法模拟不同易轴分布的简单立方排列单分散单畴Fe纳米颗粒系统的ZFC-FC曲线及磁滞回线.结果表明:随着偶极相互作用的增强,系统的阻塞温度TB逐渐增大,且ZFC曲线的峰变宽.说明偶极相互作用使得系统的有效能垒提高,分布宽度增加.研究FC曲线磁化强度的倒数与温度关系,发现偶极相互作用系统中存在反铁磁有序.系统的阻塞态及超顺磁态的磁滞回线表明,极低低温下,随着偶极相互作用的增强,系统的矫顽力和剩磁减小,偶极相互作用阻碍系统的磁化;系统处于超顺磁态,各向异性作用及偶极相互作用使得系统的磁化曲线偏离Langevin曲线且偶极相互作用展现出退磁相互作用效应.偶极相互作用增强,系统磁化曲线与Langevin曲线偏差量的最大值向低场移动.在偶极相互作用下,易轴与外场夹角为45°的磁性纳米颗粒系统的平均有效能垒和有效能垒分布宽度较易轴随机分布系统的大.  相似文献   
59.
以Bi(NO33·5H2O和Na2WO4·2H2O为主要原料,采用水热法合成了纯相Bi2WO6,并对其进行非金属离子Br-掺杂改性。采用XRD、SEM、TEM、XPS、Raman、PL和DRS研究了Br-掺杂对Bi2WO6的物相结构、形貌和可见光催化性能的影响。结果表明,Br-掺杂可有效提高Bi2WO6的可见光催化性能,当掺杂量(物质的量百分数)为8%时,溴掺杂Bi2WO6的光催化性能最好,可见光照射40 min后,可降解96.73%的罗丹明-B,与未掺杂Bi2WO6相比,其降解率提高了36.32%。  相似文献   
60.
合成了一种二维窗口型膦酸锆材料β-丙氨酸-N,N-双亚甲基膦酸锆(ZrNCP),采用X射线衍射仪、扫描电镜、透射电镜分析了合成产物的相组成和微观结构;利用N2吸脱附试验装置测定了合成产物对不同金属离子的吸附性能,考察了浓度、温度及pH对其吸附性能的影响.结果表明,合成产物内部存在大量分布均匀的微介孔,材料微观形貌为规整片状.随着金属离子半径的增大,ZrNCP对各种金属离子的平衡吸附量(mmol/g)呈逐渐减小趋势.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号