首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6450篇
  免费   1053篇
  国内免费   704篇
化学   4827篇
晶体学   56篇
力学   314篇
综合类   15篇
数学   720篇
物理学   2275篇
  2024年   14篇
  2023年   173篇
  2022年   181篇
  2021年   250篇
  2020年   308篇
  2019年   288篇
  2018年   235篇
  2017年   231篇
  2016年   355篇
  2015年   333篇
  2014年   382篇
  2013年   461篇
  2012年   603篇
  2011年   636篇
  2010年   406篇
  2009年   408篇
  2008年   398篇
  2007年   380篇
  2006年   310篇
  2005年   282篇
  2004年   196篇
  2003年   181篇
  2002年   153篇
  2001年   109篇
  2000年   98篇
  1999年   124篇
  1998年   106篇
  1997年   91篇
  1996年   88篇
  1995年   69篇
  1994年   68篇
  1993年   52篇
  1992年   60篇
  1991年   39篇
  1990年   30篇
  1989年   28篇
  1988年   20篇
  1987年   12篇
  1986年   13篇
  1985年   11篇
  1984年   9篇
  1983年   6篇
  1982年   6篇
  1981年   2篇
  1980年   1篇
  1957年   1篇
排序方式: 共有8207条查询结果,搜索用时 15 毫秒
981.
An easy and scalable methylamine (MA) gas healing method was realized for inorganic cesium‐based perovskite (CsPbX3) layers by incorporating a certain amount of MAX (X=I or Br) initiators into the raw film. It was found that the excess MAX accelerated the absorption of the MA gas into the CsPbX3 film and quickly turned it into a liquid intermediate phase. Through the healing process, a highly uniform and highly crystalline CsPbX3 film with enhanced photovoltaic performance was obtained. Moreover, the chemical interactions between a series of halides and MA gas molecules were studied, and the results could offer guidance in further optimizations of the healing strategy.  相似文献   
982.
Escherichia coli's copper efflux oxidase (CueO) has rarely been employed in the cathodic compartment of enzymatic biofuel cells (EBFCs) due to its low redox potential (0.36 V vs. Ag/AgCl, pH 5.5) towards O2 reduction. Herein, directed evolution of CueO towards a more positive onset potential was performed in an electrochemical screening system. An improved CueO variant (D439T/L502K) was obtained with a significantly increased onset potential (0.54 V), comparable to that of high‐redox‐potential fungal laccases. Upon coupling with an anodic compartment, the EBFC exhibited an open‐circuit voltage (Voc) of 0.56 V. Directed enzyme evolution by tailoring enzymes to application conditions in EBFCs has been validated and might, in combination with molecular understanding, enable future breakthroughs in EBFC performance  相似文献   
983.
Heterostructured nanomaterials, generally have physicochemical properties that differ from those of the individual components, and thus have potential in a wide range of applications. New platinum (Pt)/nickel bicarbonate (Ni(HCO3)2) heterostructures are designed for an efficient alkaline hydrogen evolution reaction (HER). Notably, the specific and mass activity of Pt in Pt/Ni(HCO3)2 are substantially improved compared to the bare Pt nanoparticles (NPs). The Ni(HCO3)2 provides abundant water adsorption/dissociation sites and modulate the electronic structure of Pt, which determine the elementary reaction kinetics of alkaline HER. The Ni(HCO3)2 nanoplates offer a platform for the uniform dispersion of Pt NPs, ensuring the maximum exposure of active sites. The results demonstrate that, Ni(HCO3)2 is an effective catalyst promoter for alkaline HER.  相似文献   
984.
Organic chemists now can construct carbon–carbon σ‐bonds selectively and sequentially, whereas methods for the selective cleavage of carbon–carbon σ‐bonds, especially for unreactive hydrocarbons, remain limited. Activation by ring strain, directing groups, or in the presence of a carbonyl or a cyano group is usually required. In this work, by using a sequential strategy site‐selective cleavage and borylation of C(aryl)?CH3 bonds has been developed under directing group free and transition metal free conditions. Methyl groups of various arenes are selectively cleaved and replaced by boryl groups. Mechanistic analysis suggests that it proceeds by a sequential intermolecular oxidation and coupling of a transient aryl radical, generated by radical decarboxylation, involving a pyridine‐stabilized persistent boryl radical.  相似文献   
985.
In this study, an organic semiconducting pro‐nanostimulant (OSPS) with a near‐infrared (NIR) photoactivatable immunotherapeutic action for synergetic cancer therapy is presented. OSPS comprises a semiconducting polymer nanoparticle (SPN) core and an immunostimulant conjugated through a singlet oxygen (1O2) cleavable linkers. Upon NIR laser irradiation, OSPS generates both heat and 1O2 to exert combinational phototherapy not only to ablate tumors but also to produce tumor‐associated antigens. More importantly, NIR irradiation triggers the cleavage of 1O2‐cleavable linkers, triggering the remote release of the immunostimulants from OSPS to modulate the immunosuppressive tumor microenvironment. Thus, the released tumor‐associated antigens in conjunction with activated immunostimulants induce a synergistic antitumor immune response after OSPS‐mediated phototherapy, resulting in the inhibited growth of both primary/distant tumors and lung metastasis in a mouse xenograft model, which is not observed for sole phototherapy.  相似文献   
986.
987.
We demonstrate a simple and effective chemical equilibrium regulation strategy to improve the efficiency of electrochemical ammonia synthesis by constructing electrochemical reaction system that works at significantly lower pressure than the Haber–Bosch process. Transferring the nitrogen reduction reaction from ambient conditions to a lightly pressurized environment not only accelerates the activation of the N≡N triple bond but also inhibits the competing reaction of hydrogen evolution while promoting the dissolution and diffusion of nitrogen. The verification experiment of using well‐designed Fe3Mo3C/C composite nanosheets as the nitrogen reduction catalyst shows that the lower pressure reaction system can improve the Faradaic current efficiency by one order of magnitude. Moreover, the comparatively low‐pressure reaction system can greatly reduce the cell voltage of the ammonia synthesis reaction (up to 33 %) even at the relatively low pressure of 0.7 MPa, which is of significance for decreasing the energy consumption of electrochemical ammonia synthesis under mild conditions.  相似文献   
988.
Lamellar membranes with well‐defined 2D nanochannels show fast, selective permeation, but the underlying molecular transport mechanism is unexplored. Now, regular robust MXene Ti3C2Tx lamellar membranes are prepared, and the size and wettability of nanochannels are manipulated by chemically grafted hydrophilic (?NH2) or hydrophobic (?C6H5, ?C12H25) groups. These nanochannels have a sharp difference in mass transfer behavior. Hydrophilic nanochannels, in which polar molecules form orderly aligned aggregates along channel walls, impart ultrahigh permeance (>3000 L m?2 h?1 bar?1), which is more than three times higher than that in hydrophobic nanochannels with disordered molecular configuration. In contrast, nonpolar molecules with disordered configuration in both hydrophilic and hydrophobic nanochannels have comparable permeance. Two phenomenological transport models correlate the permeance with the mass transport mechanism of molecules that display ordered and disordered configuration.  相似文献   
989.
报导了采用基于室温脉冲量子级联激光器的脉内光谱检测技术,利用中心波长为1904 cm-1的量子级联激光器,在实验室对NO气体样品进行检测的研究结果. 针对单线直接吸收光谱反演算法进行了研究,介绍了基线拟合的最小二乘算法以获取其吸光度,根据HITRAN数据库中相应吸收谱线的吸收线强,采用扫描积分实现了气体浓度的反演,避免了标气标定造成的误差及污染;通过拟合残差分析得到了系统的检测限,达到34×10-6 m. 关键词: 量子级联激光器 中红外 多项式拟合 扫描积分  相似文献   
990.
The development of a simple directly wearable approach for the rapid, specific and sensitive determination of biomarkers is of great importance to a variety of biomedical applications. Dental floss can provide a unique device platform for sensing of oral biomarkers. We show here for the first time the development of a smart dental floss for biosensing of glucose. The sensor was made by painting carbon graphite ink and Ag/AgCl ink on dental floss. Via the immobilization of glucose oxidase, we show the detection of glucose with a detection range of 0.048 mM to 19.5 mM and a response time of about 2 min. It is expected that our results could provide new exciting opportunities for the development of various flexible smart sensing devices in oral health applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号