首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69688篇
  免费   11841篇
  国内免费   3206篇
化学   63458篇
晶体学   713篇
力学   2055篇
综合类   128篇
数学   5648篇
物理学   12733篇
  2023年   313篇
  2022年   436篇
  2021年   978篇
  2020年   1986篇
  2019年   3253篇
  2018年   1639篇
  2017年   1288篇
  2016年   4354篇
  2015年   4420篇
  2014年   4617篇
  2013年   6051篇
  2012年   5601篇
  2011年   5159篇
  2010年   4681篇
  2009年   4549篇
  2008年   4783篇
  2007年   3973篇
  2006年   3529篇
  2005年   3431篇
  2004年   2933篇
  2003年   2499篇
  2002年   3151篇
  2001年   2255篇
  2000年   2038篇
  1999年   925篇
  1998年   478篇
  1997年   484篇
  1996年   539篇
  1995年   430篇
  1994年   381篇
  1993年   381篇
  1992年   352篇
  1991年   288篇
  1990年   221篇
  1989年   204篇
  1988年   180篇
  1987年   158篇
  1986年   128篇
  1985年   192篇
  1984年   131篇
  1983年   117篇
  1982年   136篇
  1981年   99篇
  1980年   84篇
  1978年   82篇
  1977年   86篇
  1976年   96篇
  1975年   104篇
  1974年   85篇
  1973年   102篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
In the present work we describe a two‐dimensional liquid chromatographic system (2D‐LC) with detection by mass spectrometry (MS) for the simultaneous separation of endogenous metabolites of clinical interest and excreted xenobiotics deriving from exposure to toxic compounds. The 2D‐LC system involves two orthogonal chromatographic modes, hydrophilic interaction liquid chromatography (HILIC) to separate polar endogenous metabolites and reversed‐phase (RP) chromatography to separate excreted xenobiotics of low and intermediate polarity. Additionally, the present proposal has the novelty of incorporating an on‐line sample treatment based on the use of restricted access materials (RAMs), which permits the direct injection of urine samples into the system. The work is focused on the instrumental coupling, studying all possible options and attempting to circumvent the problems of solvent incompatibility between the RAM device and the two chromatographic columns, HILIC and RP. The instrumental configuration developed, RAM‐HILIC‐RPLC‐MS/MS, allows the simultaneous assessment of urinary metabolites of clinical interest and excreted compounds derived from exposure to toxic agents with minimal sample manipulation. Thus, it may be of interest in areas such as occupational and environmental toxicology in order to explore the possible relationship between the two types of compounds. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
32.
According to the one-dimensional quantum state distribution, carrier scattering, and fixed range hopping model, the structural stability and electron transport properties of N-, P-, and As-doped SiC nanowires(N-SiCNWs, P-SiCNWs, and As-SiCNWs) are simulated by using the first principles calculations. The results show that the lattice structure of NSiCNWs is the most stable in the lattice structures of the above three kinds of doped SiCNWs. At room temperature,for unpassivated SiCNWs, the doping effect of P and As are better than that of N. After passivation, the conductivities of all doped SiCNWs increase by approximately two orders of magnitude. The N-SiCNW has the lowest conductivity. In addition, the N-, P-, As-doped SiCNWs before and after passivation have the same conductivity–temperature characteristics,that is, above room temperature, the conductivity values of the doped SiCNWs all increase with temperature increasing.These results contribute to the electronic application of nanodevices.  相似文献   
33.
34.
DFT computations have been performed to investigate the mechanism of H2‐assisted chain transfer strategy to functionalize polypropylene via Zr‐catalyzed copolymerization of propylene and p‐methylstyrene (pMS). The study unveils the following: (i) propylene prefers 1,2‐insertion over 2,1‐insertion both kinetically and thermodynamically, explaining the observed 1,2‐insertion regioselectivity for propylene insertion. (ii) The 2,1‐inserion of pMS is kinetically less favorable but thermodynamically more favorable than 1,2‐insertion. The observation of 2,1‐insertion pMS at the end of polymer chain is due to thermodynamic control and that the barrier difference between the two insertion modes become smaller as the chain length becomes longer. (iii) The pMS insertion results in much higher barriers for subsequent either propylene or pMS insertion, which causes deactivation of the catalytic system. (iv) Small H2 can react with the deactivated [Zr]?pMS?PPn facilely, which displace functionalized pMS?PPn chain and regenerate [Zr]? H active catalyst to continue copolymerization. The effects of counterions are also discussed. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 576–585  相似文献   
35.
Microtubule dynamics is a target for many chemotherapeutic drugs. In order to understand the biochemical effects of paclitaxel on the GTPase activity of tubulin, the status of guanine nucleotides in microtubules was investigated by 31P cross‐polarization magic angle spinning (CPMAS) NMR. Microtubules were freshly prepared in vitro in the presence of paclitaxel and then lyophilized in sucrose buffer for solid‐state NMR experiments. A 31P CPMAS NMR spectrum with the SNR of 25 was successfully acquired from the lyophilized microtubule sample. The broadness of the 31P spectral lines in the spectrum indicates that the molecular environments around the guanine nucleotides inside tubulin may not be as crystalline as reported by many diffraction studies. Deconvolution of the spectrum into four spectral components was carried out in comparison with the 31P NMR spectra obtained from five control samples. The spectral analysis suggested that about 13% of the nucleotides were present as GTP and 37% as GDP in the β‐tubulin (E‐site) of the microtubules. It was found that most of the GDPs were present as GDP‐Pi complex in the microtubules, which seems to be one of the effects of paclitaxel binding. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
36.
Four kinds of red phosphorescent organic light-emitting devices were fabricated and compared to investigate the effect of interfacial layers for hole transport and electron injection. 1 nm-thick LiF in the device A and C and 1 nm-thick Cs2CO3 in the device B and D were deposited as an electron injection layer between the anode and the electron transport layer, and 5 nm-thick layer of dipyrazion[2,3-f:2′,2′-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile[HATCN] was inserted as a hole transport interfacial layer between the hole injection layer and the hole transport layer only in the device C and D. Under a luminance of 1000 cd/m2, the power efficiencies were 7.6 lm/W and 8.5 lm/W in the device A and B, and 8.6 lm/W and 13.4 lm/W in the device C and D. The quantum efficiency of the device D was 15.8% under 1000 cd/m2 which was somewhat lower than those of the device A and C, but a little higher than that of the device B. The luminance of the device D was much higher than those of the other devices at a given votage. The luminance of the device D at 7 V was 23,710 cd/m2, which was 13.0, 3.4, and 4.0 times higher than those of the device A, B, and C at the same voltage, respectively.  相似文献   
37.
Efficient water electrolysis catalyst is highly demanded for the production of hydrogen as a sustainable energy fuel. It is reported that cobalt derived nanoparticle (CoS2, CoP, CoS|P) decorated reduced graphene oxide (rGO) composite aerogel catalysts for highly active and reliable hydrogen evolution reaction electrocatalysts. 7 nm level cobalt derived nanoparticles are synthesized over graphene aerogel surfaces with excellent surface coverage and maximal expose of active sites. CoS|P/rGO hybrid aerogel composites show an excellent catalytic activity with overpotential of ≈169 mV at a current density of ≈10 mA cm?2. Accordingly, efficient charge transfer is attained with Tafel slope of ≈52 mV dec?1 and a charge transfer resistance (Rct) of ≈12 Ω. This work suggests a viable route toward ultrasmall, uniform nanoparticles decorated graphene surfaces with well‐controlled chemical compositions, which can be generally useful for various applications commonly requiring large exposure of active surface area as well as robust interparticle charger transfer.  相似文献   
38.
The modulation of electron density is an effective option for efficient alternative electrocatalysts. Here, p‐n junctions are constructed in 3D free‐standing FeNi‐LDH/CoP/carbon cloth (CC) electrode (LDH=layered double hydroxide). The positively charged FeNi‐LDH in the space‐charge region can significantly boost oxygen evolution reaction. Therefore, the j at 1.485 V (vs. RHE) of FeNi‐LDH/CoP/CC achieves ca. 10‐fold and ca. 100‐fold increases compared to those of FeNi‐LDH/CC and CoP/CC, respectively. Density functional theory calculation reveals OH? has a stronger trend to adsorb on the surface of FeNi‐LDH side in the p‐n junction compared to individual FeNi‐LDH further verifying the synergistic effect in the p‐n junction. Additionally, it represents excellent activity toward water splitting. The utilization of heterojunctions would open up an entirely new possibility to purposefully regulate the electronic structure of active sites and promote their catalytic activities.  相似文献   
39.
The present study was designed to evaluate the contents of different antioxidants compounds and their antioxidant activities in Jalopeno peppers (Capsicum annuum) cultivars (El Dorido, Grande, Tula, Sayula and El Rey) extracts. Free radical scavenging activity of Grande was recorded as high as 87% followed by El Dorido (83%). Results of reducing power (Fe3+ to Fe2+) showed that Grande (0.85%) and El Dorido (0.81%) fruit extract absorbance value were close to synthetic antioxidant BHT (0. 97%) obtained at100 μg/mL. The results showed that total phenolic content of El Dorido and Grande were significantly higher compared to other Jalapeno pepper. Results indicated strong and positive correlation between antioxidant activity and carotenoids content (r = 0.75), vitamin C (r = 0.78) and total capsaicinoids (r = 0.84), respectively. The results of the antioxidant activity assays showed that the El Dorido and Grande had strongest antioxidant activity compared to other peppers cultivars in this study.  相似文献   
40.
We report on the first examples of isolated silanol–silanolate anions, obtained by utilizing weakly coordinating phosphazenium counterions. The silanolate anions were synthesized from the recently published phosphazenium hydroxide hydrate salt with siloxanes. The silanol–silanolate anions are postulated intermediates in the hydroxide‐mediated polymerization of aryl and alkyl siloxanes. The silanolate anions are strong nucleophiles because of the weakly coordinating character of the phosphazenium cation, which is perceptible in their activity in polysiloxane depolymerization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号