首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of a saline phosphazenium hydroxide hydrate with siloxanes led to a novel kind of silanol-silanolate anions. The weakly coordinating behavior of the cation renders the formation of silanol-silanolate hydrogen bonds possible, which otherwise suffer from detrimental silanolate–oxygen cation interactions. We investigated the influence of various weakly coordinating cations on silanol-silanolate motifs, particularly with regard to different cation sizes. While large cations favor the formation of intramolecular hydrogen bonds resulting in cyclic structures, the less bulky tetramethyl ammonium cation encourages the formation of polyanionic silanol-silanolate chains in the solid state.  相似文献   

2.
The effect of small amounts (0.01%–1%) of dimethyl sulfoxide on base-catalyzed polymerization and equilibration of methylsiloxanes has been examined. The addition of 0.5% of the sulfoxide increases the rate of potassium hydroxide-catalyzed polymerization of octamethylcyclotetrasiloxane by factors of 100–1000 and amounts as low as 0.01% have a large effect when low (12 ppm) catalyst concentrations are used. The rate of basecatalyzed equilibration of hexamethyl disiloxane with octamethylcyclotetrasiloxane is similarly enhanced by dimethyl sulfoxide. The equilibration occurs rapidly at 80°C. with 0.01% of potassium hydroxide and 1% of dimethyl sulfoxide, but does not proceed at a measurable rate with potassium hydroxide alone. The combination of 0.01% potassium hydroxide and 1% dimethyl sulfoxide is more effective than 0.1% of tetramethylammonium hydroxide. The large accelerating effect of the sulfoxide is believed to be due to solvation of the cation, which promotes ionization of the metal silanolate, increasing the concentration of silanolate anions.  相似文献   

3.
A series of new 1,3‐disiloxanediols has been synthesized, including naphthyl‐substituted and unsymmetrical siloxanes, and demonstrated as a new class of anion‐binding catalysts. In the absence of anions, diffusion‐ordered spectroscopy (DOSY) displays self‐association of 1,3‐disiloxanediols through hydrogen‐bonding interactions. Binding constants determined for 1,3‐disiloxanediol catalysts indicate strong hydrogen‐bonding and anion‐binding abilities with unsymmetrical siloxanes displaying different hydrogen‐bonding abilities for each silanol group.  相似文献   

4.
Kinetics of reactions of model oligosiloxanols, 1,1,3,3,3-pentamethyldisiloxane-1-ol (MDH) and 1,1,3,3,5,5,5-heptamethyltrisiloxane-1-ol (MD2H), which occur in the presence of phosphazenium superbase, hexapyrrolidine-diphosphazenium hydroxide, in an acid-base inert solvent, toluene, was studied using sampling and gas chromatographic analysis method. In addition, kinetics of reactions of MDH and MD2H with trimethylsilanol (MH) was studied. In the MDH and MD2H systems the oligosiloxanol condensation competes with the oligosiloxanol disproportionation, the latter being the dominating process. The disproportionation products, i.e. MDn+1H and MDn−1H, n=1, 2, … undergo analogous consecutive disproportionation and condensation reactions. The kinetic law was derived and rate parameters determined from initial rates and by computer simulation to the best agreement with experimental data. Both competing reactions, the disproportionation and the condensation, conform to the same general kinetic law being first internal order in substrate and first order in catalyst. Activation parameters of these reactions were determined. The results were interpreted in terms of a bimolecular mechanism in which nucleophilic attack of the silanolate anion directed to silicon of the silanol group causes the cleavage of one of its geminal bonds to oxygen, either the one to hydroxyl leading to condensation or the one to siloxane which leads to disproportionation. The latter is faster as the silanolate is a better leaving group compared with OH. Moreover, in the pentacoordinate silicon transition state (or intermediate) the siloxane substituent preferentially enters the apical position, thus driving the OH substituent into the unreactive equatorial position.  相似文献   

5.
The synthesis of three new ligands and their coordination behavior towards zinc ions with strongly coordinating anions and cobalt ions with weakly coordinating anions are reported. The ligands have two adjacent imidazolyl‐pyridinyl and pyrazolyl‐pyridinyl binding pockets, respectively, which are linked by a phenol unit. We also investigated the dynamic behavior of the ligand having the imidazolyl‐pyridiyl sidearm in solution. The reaction of the ligands and ZnCl2 yielded complexes of the type [ L Zn2Cl3]. When we used CoII salts with weakly coordinating anions, complexes of the general formula [ L 2Co2]2+ were formed.  相似文献   

6.
The reaction of the strong monophosphazene base with the weakly acidic phenol leads to the formation of a phenol–phenolate anion with a moderately strong hydrogen bond. Application of the more powerful tetraphosphazene base (Schwesinger base) renders the isolation of the corresponding salt with a free phenolate anion possible. This compound represents the first species featuring the free phenolate anion [H5C6-O]. The deprotonation of phenol derivatives with tetraphosphazene bases represents a great way for the clean preparation of salts featuring free phenolate anions and in addition allows the selective syntheses of hydrogen bonded phenol-phenolate salts. This work presents a phosphazenium phenolate salt with a redox potential of −0.72 V and its capability for the selective activation of the chemically inert greenhouse gas SF6. The performed two-electron reduction of SF6 leads to phosphazenium pentafluorosulfanide ([SF5]) and fluoride salts.  相似文献   

7.
The synthesis of base‐stabilized boryl and borylene complexes is reported. An N‐heterocyclic carbene (NHC)‐stabilized iron–dihydroboryl complex was prepared by two different routes including methane liberation and salt elimination. A range of base‐stabilized iron–dichloroboryl complexes was prepared by addition of Lewis bases to boryl complexes. Base‐stabilized, cationic monochloroborylene complexes were synthesized from these boryl complexes by halide abstraction by using weakly coordinating anions.  相似文献   

8.
We designed, synthesized, and characterized two types of dimeric forms of monocarba‐closo‐dodecaborate, namely, a “dumbbell”‐shaped dianion having a C?C bond and a “clackers”‐shaped monoanion having an iodonium linker. The unique architectures of these anionic molecules were established by X‐ray analysis. Spectroscopic analysis, DFT calculations, and reactivity experiments revealed high anionic and chemical stability of both anions, which are crucial properties for weakly coordinating anions.  相似文献   

9.
Weakly coordinating borate or aluminate anions have recently been shown to yield interesting properties of the resulting ionic liquids (ILs). The same is true for large phenyl‐substituted imidazolium cations, which can be tuned by the choice, position, or number of substituents on the aromatic ring. We were therefore interested to combine these aryl alkyl imidazolium cations with the weakly coordinating tetrakis((1,1,1,3,3,3‐hexafluoropropan‐2‐yl)oxy)borate [B(hfip)4]? anions to study the physical properties and viscosities of these ionic liquids. Despite the large size and high molecular weight of these readily available ILs, they are liquid at room temperature and show remarkably low glass transition points and relatively high decomposition temperatures.  相似文献   

10.
二甲基二氯硅烷在无溶剂存在下完全水解时,同时生成环状低聚物和长链线状物。 文献曾经指出,二甲基二氯硅烷水解产物用氢氧化钾等作催化剂在氮气下热裂解可形成环状物馏出;水解物中的三官能性成分形成树脂状殘留物。环状物中以八甲基环四硅氧烷(簡称环四聚体)最多,約占60—70%。如果催化裂解在減压下进行,可以降低裂解温度,并由于生成的高环体容易分解,环四聚体的含量可以增加。 本文报告用硅醇鉀使水解产物在減压下催化裂解的結果及其特点。  相似文献   

11.
The properties of ionic liquids are described by a subtle balance between Coulomb interaction, hydrogen bonding, and dispersion forces. We show that lowering the attractive Coulomb interaction by choosing weakly coordinating anions leads to the formation of cationic clusters. These clusters of like‐charged ions are stabilized by cooperative hydrogen bonding and controlled by the interaction potential of the anion. IR and NMR spectroscopy combined with computational methods are used to detect and characterize these unusual, counter‐intuitively formed clusters. They can be only observed for weakly coordinating anions. When cationic clusters are formed, cyclic tetramers are particularly stable. Therein, cooperative hydrogen‐bond attraction can compete with like‐charge repulsion. We present a simple but effective spectroscopic scale for the possibility of like‐charge attraction in ionic liquids, based on IR and NMR signatures.  相似文献   

12.
By utilizing reaction mixtures, such as Me3Si–X/[Me3Si–X–SiMe3]+ (X=CN, OCN, SCN, and NNN), it was possible to prepare the first examples of bissilylated pseudohalonium cations in high yields. The structure and bonding of a whole series of salts containing pseudohalonium cations is discussed on the basis of experimentally observed (X‐ray diffraction, Raman, and IR spectroscopy, and mass spectrometry) and theoretically obtained data. Salts containing pseudohalonium cations are only stable in the presence of weakly coordinating anions, such as the well‐known tetrakis(pentafluorophenyl)borate, [B(C6F5)4]?.  相似文献   

13.
The synthesis and characterization of two novel cyclic siloxanes, diacetoxydiethyltetramethylcyclotetrasiloxane and diacetoxytriethylpentamethylcyclopentasiloxane, and cyclolinear polymers synthesized from these monomers are presented. The cyclic siloxanes were synthesized from tetramethylcyclotetrasiloxane and pentamethylcyclopentasiloxane, respectively, by acetylation followed by ethylation. The cyclic monomers were characterized with 1H NMR spectroscopy. Subsequently, the cyclic siloxanes were self‐condensed into cyclolinear polysiloxanes and cocondensed (extended) with silanol‐terminated polydimethylsiloxane into high‐molecular‐weight polymers containing cyclic units withlinearpolydimethylsiloxane spacers (extended cyclolinear polysiloxanes). The molecular weights of both the cyclolinear polysiloxanes and extended cyclolinear polysiloxanes were determined. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4039?4052, 2006  相似文献   

14.
Aiming at the generation of a silanone intramolecularly bound to platinum, we prepared pincer-type PSiP silanol Pt(II) complexes. While a stable silanone complex was not isolated, unusual reactivity modes, involving its possible intermediacy, were observed. Treatment of the new PSiH 2P-type ligand ( o-IPr 2PC 6H 4) 2SiH 2 ( 7) with (Me 2S) 2Pt(Me)Cl yields the pincer-type hydrosilane complex [{( o- iPr 2PC 6H 4) 2SiH}PtCl] ( 8), which upon Ir(I)-catalyzed hydrolytic oxidation gives the structurally characterized silanol complex [{( o- iPr 2PC 6H 4) 2SiOH}PtCl] ( 3). Complex 3, comprising in its structure the nucleophilic silanol fragment and electrophilic Pt(II)-Cl moiety, exhibits dual reactivity. Its reaction with the non-nucleophilic KB(C 6F 5) 4 in fluorobenzene leads to the ionic complex [{( o- iPr 2PC 6H 4) 2SiOH}Pt] (+) [(C 6F 5) 4B] (-) ( 9), which reacts with CO to yield the structurally characterized [{( o- iPr 2PC 6H 4) 2SiOH}PtCO] (+) [(C 6F 5) 4B] (-) ( 10). Treatment of 3 with non-nucleophilic bases leads to unprecedented rearrangement and coupling, resulting in the structurally characterized, unusual binuclear complex 11. The structure of 11 comprises two different fragments: the original O-Si-Pt(II)-Cl pattern, and the newly formed silanolate Pt(II)-H pattern, which are connected via a disiloxane bridge. Complex 9 undergoes a similar hydrolytic rearrangement in the presence of iPr 2NEt to give the mononuclear silanolate Pt(II)-H complex 17. Both these rearrangement-coupling reactions probably involve the inner-sphere generation of an intermediate silanone 14, which undergoes nucleophilic attack by the starting silanol 3 to yield complex 11, or adds a water molecule to yield complex 17. X-ray diffraction studies of 3, 10, and 11 exhibit a very short Si-Pt bond length (2.27-2.28 A) in the neutral complexes 3 and 11 that elongates to 2.365 A in the carbonyl complex 10. A significantly compressed geometry of the silanolate platinum(II)-hydride fragment B of the binuclear complex 11 features a Pt(2)-O(2)-Si(2) angle of 100.4 (3) degrees and a remarkably short Pt(2)...Si(2) [2.884 (3) A] distance.  相似文献   

15.
Tsang CW  Yang Q  Sze ET  Mak TC  Chan DT  Xie Z 《Inorganic chemistry》2000,39(25):5851-5858
Mixed halocarborane anions, 1-H-CB11Y5X6- (X, Y = Cl, Br, I), have been prepared by treatment of [Me3NH][1-H-CB11H5X6] (X = Cl, Br, I) with proper halogenating reagents at 180-220 degrees C in a sealed tube in high yield. These new anions are fully characterized by 1H, 13C, and 11B NMR, IR, and negative-ion MALDI MS spectroscopy. Some are further confirmed by single-crystal X-ray analyses. The weakly coordinating nature of these anions is probed by 29Si chemical shifts of the resulting Pri3Si(1-H-CB11Y5X6) compounds. The results suggest that the coordinating ability of these anions is mainly dependent on the substituents at 7-12 positions (namely, X atoms), and the contribution from the upper belt substituents Y is relatively small. These suggestions are consistent with the results obtained from the structural study of silver salts of mixed halo- and perhalocarborane anions.  相似文献   

16.
The reportedly unprotonatable pentacyano-cyclo-pentadienide ion, C(5)(CN)(5)(-), can be protonated and silylated at the cyano N atom using electrophilic reagents derived from weakly coordinating carborane anions.  相似文献   

17.
In this Concept article we provide a brief overview of the design and preparation of N-heterocyclic carbenes carrying weakly coordinating anions (WCA-NHCs). The anionic charge in these ligand systems is located on an exocyclic group, for example, B(C6F5)3, tethered to the backbone of the imidazole ring, thus resembling a weakly coordinating moiety. With the general guiding principle behind the application of WCA-NHCs being the conversion of otherwise cationic NHC complexes into their overall neutral congeners, numerous transition metal as well as main group element complexes were isolated during the last decade, which are summarized herein.  相似文献   

18.
A scale that attempts to quantify the weakly coordinating character of a variety of solvents and anions is presented. For each group (solvent or anion), a coordinating ability index has been calculated, based on the probability of it being coordinated in the presence of a transition metal atom, compared to the probability of finding it as a solvation molecule or as non-coordinating counterion in a crystal structure. The corresponding index is also defined for the same groups in the presence of lanthanides, and the similarities and differences are discussed.  相似文献   

19.
The different natures of the weakly coordinating anions – triflate or perchlorate – in the Cu2+-mediated self-assembly of cytidine monophosphate nucleotide play a fundamental role in the homochiral resolution process, yielding one-dimensional copper(ii) coordination polymers of opposite helicity that can be easily inverted, in a reversible way, by changing the nature of the anion as revealed by circular dichroism experiments both in solution and in the solid state.  相似文献   

20.
The icosahedral carborane anions H-CB11X6H5- (X = Cl, Br, I) are among the most inert, least coordinating, and least basic anions known. These properties are enhanced by 2,3,4,5,6-pentamethylation with methyl triflate. The resulting anions, H-CB11X6Me5-, are more inert than their unmethylated precursors, have improved NMR handles, and their salts have higher solubility in low dielectric media. They sustain superacidity in H(H-CB11X6Me5). Protonated benzene has been isolated and characterized by X-ray crystallography, moving Wheland intermediates from the status of spectroscopically observable transients to weighable reagents. The new anions sustain extreme Lewis acidity in silylium ion-like R3Si(H-CB11X6Me5) species. Treatment of Et3Si(H-CB11Br6Me5) with methyl triflate leads to a new methyl+ reagent CH3(H-CB11Br6Me5) that is more potent than methyl triflate. It methylates benzene without heating or acid catalysis to give the toluenium ion. The H-CB11X6Me5- anions come as close as any to the concept of a univeral weakly coordinating anion and, with cheaper starting materials now available, promise to become specialty chemicals of wide usage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号