首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25996篇
  免费   4608篇
  国内免费   3121篇
化学   18875篇
晶体学   340篇
力学   1540篇
综合类   201篇
数学   2624篇
物理学   10145篇
  2024年   45篇
  2023年   520篇
  2022年   671篇
  2021年   926篇
  2020年   1087篇
  2019年   1097篇
  2018年   941篇
  2017年   824篇
  2016年   1317篇
  2015年   1251篇
  2014年   1485篇
  2013年   1954篇
  2012年   2369篇
  2011年   2337篇
  2010年   1703篇
  2009年   1636篇
  2008年   1744篇
  2007年   1563篇
  2006年   1485篇
  2005年   1298篇
  2004年   974篇
  2003年   819篇
  2002年   867篇
  2001年   620篇
  2000年   500篇
  1999年   503篇
  1998年   420篇
  1997年   416篇
  1996年   376篇
  1995年   322篇
  1994年   272篇
  1993年   206篇
  1992年   194篇
  1991年   181篇
  1990年   145篇
  1989年   124篇
  1988年   91篇
  1987年   59篇
  1986年   77篇
  1985年   62篇
  1984年   38篇
  1983年   31篇
  1982年   29篇
  1981年   23篇
  1980年   18篇
  1975年   13篇
  1974年   8篇
  1973年   9篇
  1972年   9篇
  1965年   7篇
排序方式: 共有10000条查询结果,搜索用时 28 毫秒
991.
A novel micro matrix solid phase dispersion method was successfully used for the extraction of quaternary alkaloids in Phellodendri chinensis cortex. The elution of target compounds was accomplished with sodium hexanesulfonate as the eluent solvent. A neutral ion pair was formed between ion-pairing reagent and positively charged alkaloids in this process, which was beneficial for selectively extraction of polar alkaloids. Several parameters were optimized and the optimal conditions were listed as follows: silica gel as the sorbent, silica to sample mass ratio of 1:1, the grinding time of 1 min. The exhaustive elution of targets was achieved by 200 µL methanol/water (9:1) containing 150 mM sodium hexane sulfonate at pH 4.5. The method validation covered linearity, recovery, precision of intraday and interday, limits of detection, limits of quantitation, and repeatability. This established method was rapid, simple, environmentally friendly, and highly sensitive.  相似文献   
992.
Owing to low ion/electron conductivity and large volume change, transitional metal dichalcogenides (TMDs) suffer from inferior cycle stability and rate capability when used as the anode of lithium-ion batteries (LIBs). To overcome these disadvantages, amorphous molybdenum sulfide (MoSx) nanospheres were prepared and coated with an ultrathin carbon layer through a simple one-pot reaction. Combining X-ray photoelectron spectroscopy (XPS) with theoretical calculations, MoSx was confirmed as having a special chain molecular structure with two forms of S bonding (S2− and S22−), the optimal adsorption sites of Li+ were located at S22−. As a result, the MoSx electrode exhibits superior cycle and rate capacities compared with crystalline 2H-MoS2 (e.g., delivering a high capacity of 612.4 mAh g−1 after 500 cycles at 1 A g−1). This is mainly attributed to more exposed active S22− sites for Li storage, more Li+ transfer pathways for improved ion conductivity, and suppressed electrode structure pulverization of MoSx derived from the inherent chain-like molecular structure. Quantitative charge storage analysis further demonstrates the improved pseudocapacitive contribution of amorphous MoSx induced by fast reaction kinetics. Moreover, the morphology contrast after cycling demonstrates the dispersion of active materials is more uniform for MoSx than 2H-MoS2, suggesting the MoSx can well accommodate the volume stress of the electrode during discharging. Through regulating the molecular structure, this work provides an effective targeted strategy to overcome the intrinsic issues of TMDs for high-performance LIBs.  相似文献   
993.
994.
Self‐emulsion polymerization (SEP), a green route developed by us for the polymerization of amphiphilic monomers, does not require any emulsifier or an organic solvent except that the water‐soluble initiators such as 2,2′‐azobis[2‐(2‐imidazolin‐2‐yl)propane]dihydrochloride (VA‐044) and potassium persulfate (KPS) are only used. We report here the polymer nanoscaffolds from a number of amphiphilic monomers, which can be used for in situ encapsulation of a variety of nanoparticles. As a demonstration of the efficacy of these nanoscaffolds, the synthesis of a biocompatible hybrid nanoparticle (nanohybrid), prepared by encapsulating Fe3O4 magnetic nanoparticle (Fe3O4 MNPs) in poly(2‐hydroxyethyl methacrylate) in water, for MRI application is presented. The nanohybrid prepared following the SEP in the form of an emulsion does not involve the use of any stabilizing agent, crosslinker, polymeric emulsifier, or surfactant. This water‐soluble, spherical, and stable nanohybrid containing Fe3O4 MNPs of average size 10 ± 2 nm has a zeta potential value of ?41.89 mV under physiological conditions. Magnetic measurement confirmed that the nanohybrid shows typical magnetic behavior having a saturation magnetization (Ms) value of 32.3 emu/g and a transverse relaxivity (r2) value of 29.97 mM?1 s?1, which signifies that it can be used as a T2 contrast agent in MRI. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019  相似文献   
995.
Kreweras conjectured that every perfect matching of a hypercube Qn for n2 can be extended to a hamiltonian cycle of Qn. Fink confirmed the conjecture to be true. It is more general to ask whether every perfect matching of Qn for n2 can be extended to two or more hamiltonian cycles of Qn. In this paper, we prove that every perfect matching of Qn for n4 can be extended to at least 22n?4 different hamiltonian cycles of Qn.  相似文献   
996.
The original Sasol catalytic system for ethylene tetramerization is composed of a Cr source, a PNP ligand, and MAO (methylaluminoxane). The use of expensive MAO in excess has been a critical concern in commercial operation. Many efforts have been made to replace MAO with non‐coordinating anions (e.g., [B(C6F5)4]?); however, most of such attempts were unsuccessful. Herein, an extremely active catalytic system that avoids the use of MAO is presented. The successive addition of two equivalent [H(OEt2)2]+[B(C6F5)4]? and one equivalent CrCl3(THF)3 to (acac)AlEt2 and subsequent treatment with a PNP ligand [CH3(CH2)16]2C(H)N(PPh2)2 ( 1 ) yielded a complex presumably formulated as [ 1 ‐CrAl (acac)Cl3(THF)]2+[B(C6F5)4]?2, which exhibited high activity when combined with iBu3Al (1120 kg/g‐Cr/h; ~4 times that of the original Sasol system composed of Cr (acac)3, iPrN(PPh2)2, and MAO). Via the introduction of bulky trialkylsilyl substituents such as –SiMe3, –Si(nBu)3, or –SiMe2(CH2)7CH3 at the para‐position of phenyl groups in 1 (i.e., by using [CH3(CH2)16]2C(H)N[P(C6H4p‐SiR3)2]2 instead of 1 ), the activities were dramatically improved, i.e., tripled (2960–3340 kg/g‐Cr/h; more than 10 times that of the original Sasol system). The generation of significantly less PE (<0.2 wt%) even at a high temperature is another advantage achieved by the introduction of bulky trialkylsilyl substituents. NMR studies and DFT calculations suggest that increase of the steric bulkiness on the alkyl‐N and P‐aryl moieties restrict the free rotation around (alkyl)N–P (aryl) bonds, which may cause the generation of more robust active species in higher proportion, leading to extremely high activity along with the generation of a smaller amount of PE.  相似文献   
997.
998.
We consider the nonlinear problem of inhomogeneous Allen–Cahn equation
?2Δu+V(y)u(1?u2)=0inΩ,?u?ν=0on?Ω,
where Ω is a bounded domain in R2 with smooth boundary, ? is a small positive parameter, ν denotes the unit outward normal of ?Ω, V is a positive smooth function on Ω¯. Let Γ be a curve intersecting orthogonally with ?Ω at exactly two points and dividing Ω into two parts. Moreover, Γ satisfies stationary and non-degenerate conditions with respect to the functional ΓV1/2. We can prove that there exists a solution u? such that: as ?0, u? approaches +1 in one part of Ω, while tends to ?1 in the other part, except a small neighborhood of Γ.  相似文献   
999.
Wedge-shaped molecules, such as dendrons, are among the most important building blocks for directed supramolecular self-assembly. Here we present a new approach aimed at widening the range and complexity of potential mesophases by introducing double-tapered mesogens. Two series of compounds are presented, both alkali metal salts (Li, Na, Cs) of 3,4,5-tris-alkoxybenzoic acid with a second tapered tris-alkoxyaryl group attached at the end of an alkoxy chain. The double-tapered compounds all display an unusual hexagonal columnar phase consisting of one ionic and three non-ionic columns per unit cell. The cation size has an unexpectedly drastic effect on unit cell size. Unlike most columnar phases, the current phases show unusually high dimensional stability on heating, and high stiffness in spite of being 80–85 % aliphatic, attributed to their molecular topology. The described approach may lead to co-assemblies of multifunctional materials, for example, parallel p- and n-semiconducting nanowires or parallel ionic and electronic conductors.  相似文献   
1000.
Bimetallic AgPd nanoparticles have been synthesized before, but the interfacial electronic effects of AgPd on the photocatalytic performance have been investigated less. In this work, the results of hydrogen evolution suggest that the bimetallic AgPd/g-C3N4 sample has superior activity to Ag/g-C3N4 and Pd/g-C3N4 photocatalysts. The UV/Vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, CO adsorption diffuse reflectance FTIR spectroscopy, and FTIR results demonstrate that in the AgPd/g-C3N4, the surface electronic structures of Pd and Ag are changed, which is beneficial for faster photogenerated electron transfer and greater H2O molecule adsorption. In situ ESR spectra suggest that, under visible light irradiation, there is more H2O dissociation to radical species on the AgPd/g-C3N4 photocatalyst. Furthermore, DFT calculations confirm the interfacial electronic effects of AgPd/g-C3N4, that is, Pdδ−⋅⋅⋅Agδ+, and the activation energy of H2O molecule dissociation on AgPd/g-C3N4 is the lowest, which is the main contributor to the enhanced photocatalytic H2 evolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号