首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   328篇
  免费   5篇
  国内免费   1篇
化学   234篇
力学   3篇
数学   27篇
物理学   70篇
  2023年   3篇
  2021年   6篇
  2020年   3篇
  2019年   2篇
  2018年   3篇
  2016年   3篇
  2014年   2篇
  2013年   16篇
  2012年   16篇
  2011年   26篇
  2010年   6篇
  2009年   4篇
  2008年   17篇
  2007年   15篇
  2006年   21篇
  2005年   27篇
  2004年   14篇
  2003年   12篇
  2002年   20篇
  2001年   9篇
  2000年   6篇
  1999年   3篇
  1998年   4篇
  1996年   10篇
  1995年   6篇
  1994年   8篇
  1993年   5篇
  1992年   11篇
  1991年   3篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1986年   2篇
  1985年   6篇
  1984年   2篇
  1982年   4篇
  1981年   5篇
  1980年   4篇
  1979年   3篇
  1978年   3篇
  1977年   3篇
  1976年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1967年   1篇
  1935年   2篇
  1887年   1篇
  1886年   1篇
排序方式: 共有334条查询结果,搜索用时 328 毫秒
31.
Ohne Zusammenfassung Vergl. meine Abhandlung:Om en ny klass af transcendenta functioner, hvilka ?ro n?ra besl?gtade med gammafunktionen, Acta soc. scient. Fennic?, Tom. XIV, XV; 1885, 1886.  相似文献   
32.
We studied the oxidation of neo-pentane by combining experiments, theoretical calculations, and mechanistic developments to elucidate the impact of the 3rd O2 addition reaction network on ignition delay time predictions. The experiments are based on photoionization mass spectrometry in jet-stirred and time-resolved flow reactors allowing for sensitive detection of the keto-hydroperoxide (KHP) and keto-dihydroperoxide (KDHP) intermediates. With neo-pentane exhibiting a unique symmetric molecular structure, which consequently results only in single KHP and KDHP isomers, theoretical calculations of ionization and fragment appearance energies and of absolute photoionization cross sections enabled the unambiguous identification and quantification of the KHP intermediate. Its temperature and time-resolved profiles together with calculated and experimentally observed KHP-to-KDHP signal ratios were compared to simulation results based on a newly developed mechanism that describes the 3rd O2 addition reaction network. A satisfactory agreement has been observed between the experimental data points and the simulation results, thus adding confidence to the model's overall performance. Finally, this mechanism was used to predict ignition delay times reported previously in shock tube and rapid compression machine experiments (J. Bugler et al., Combust. Flame 163 (2016) 138–156). While the model accurately reproduces the experimental data, simulations with and without the 3rd O2 addition reaction network included reveal only a negligible effect on the predicted ignition delay times at 10 and 20 atm. According to model calculations, low temperatures and high pressures promote the importance of the 3rd O2 addition reactions.  相似文献   
33.
To improve our understanding of the combustion characteristics of propyne, new experimental data for ignition delay times (IDTs), pyrolysis speciation profiles and flame speed measurements are presented in this study. IDTs for propyne ignition were obtained at equivalence ratios of 0.5, 1.0, and 2.0 in ‘air’ at pressures of 10 and 30 bar, over a wide range of temperatures (690–1460 K) using a rapid compression machine and a high-pressure shock tube. Moreover, experiments were performed in a single-pulse shock tube to study propyne pyrolysis at 2 bar pressure and in the temperature range 1000–1600 K. In addition, laminar flame speeds of propyne were studied at an unburned gas temperature of 373 K and at 1 and 2 bar for a range of equivalence ratios. A detailed chemical kinetic model is provided to describe the pyrolytic and combustion characteristics of propyne across this wide-ranging set of experimental data. This new mechanism shows significant improvements in the predictions for the IDTs, fuel pyrolysis and flame speeds for propyne compared to AramcoMech3.0. The improvement in fuel reactivity predictions in the new mechanism is due to the inclusion of the propyne + H?2 reaction system along with ?H radical addition to the triple bonds of propyne and subsequent reactions.  相似文献   
34.
The oxidation of methyl formate (CH3OCHO) has been studied in three experimental environments over a range of applied combustion relevant conditions:
  • 1. A variable‐pressure flow reactor has been used to quantify reactant, major intermediate and product species as a function of residence time at 3 atm and 0.5% fuel concentration for oxygen/fuel stoichiometries of 0.5, 1.0, and 1.5 at 900 K, and for pyrolysis at 975 K.
  • 2. Shock tube ignition delays have been determined for CH3OCHO/O2/Ar mixtures at pressures of ≈ 2.7, 5.4, and 9.2 atm and temperatures of 1275–1935 K for mixture compositions of 0.5% fuel (at equivalence ratios of 1.0, 2.0, and 0.5) and 2.5% fuel (at an equivalence ratio of 1.0).
  • 3. Laminar burning velocities of outwardly propagating spherical CH3OCHO/air flames have been determined for stoichiometries ranging from 0.8–1.6, at atmospheric pressure using a pressure‐release‐type high‐pressure chamber.
A detailed chemical kinetic model has been constructed, validated against, and used to interpret these experimental data. The kinetic model shows that methyl formate oxidation proceeds through concerted elimination reactions, principally forming methanol and carbon monoxide as well as through bimolecular hydrogen abstraction reactions. The relative importance of elimination versus abstraction was found to depend on the particular environment. In general, methyl formate is consumed exclusively through molecular decomposition in shock tube environments, while at flow reactor and freely propagating premixed flame conditions, there is significant competition between hydrogen abstraction and concerted elimination channels. It is suspected that in diffusion flame configurations the elimination channels contribute more significantly than in premixed environments. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 527–549, 2010  相似文献   
35.
We consider the Hamilton formulation as well as the Hamiltonian flows on a symplectic (phase) space. These symplectic spaces are derivable from the Lie group of symmetries of the physical system considered. In Part 2 of this work, we then obtain the Hamiltonian formalism in the Hilbert spaces of square integrable functions on the symplectic spaces so obtained.  相似文献   
36.
Ultraviolet laser removal of small metallic particles from silicon wafers   总被引:1,自引:0,他引:1  
Laser removal of small 1 μm sized copper, gold and tungsten particles from silicon wafer surfaces was carried out using ultraviolet radiation at 266 nm generated by Nd:YAG harmonic generation. Successful removal of both copper and gold particles from the surface was achieved whereas tungsten particles proved to be difficult to remove. The cleaning efficiency was increased with an increase of laser fluence. The optimum processing window for safe cleaning of the surface without any substrate damage was determined by measuring the damage threshold laser fluence on the silicon substrate and the required fluence for complete removal of the particles. The different cleaning efficiencies with particle type are discussed by considering the adhesion force of the particle on the surface and the laser-induced cleaning force for the three different particles.  相似文献   
37.
N,N'-dialkyl and N,N'-diaryl imidazol-2-ylidene-boranes and trifluoroboranes are rapidly lithiated at C4 of the imidazole ring, and the resulting intermediates have been quenched with an assortment of electrophiles to provide ring-functionalized imidazol-2-ylidene-boranes. Further deprotonation and functionalization of C5 have been demonstrated. Deboronation of the products by treatment with triflic acid or iodine and then methanol opens a route to C4/C5 functionalized imidazolium salts and imidazol-2-ylidenes.  相似文献   
38.
A theoretical study is presented of the mechanism and kinetics of the reactions of the hydroxyl radical with three ketones: dimethyl (DMK), ethylmethyl (EMK) and iso-propylmethyl (iPMK) ketones. CCSD(T) values extrapolated to the basis set limit are used to benchmark the computationally less expensive methods G3 and G3MP2BH&H, for the DMK + OH reaction system. These latter methods are then used in computations involving the reactions of the larger ketones. All possible abstraction channels have been modeled. A stepwise mechanism involving the formation of a reactant complex in the entrance channel and a product complex in the exit channel has been recognized in part of the abstracting processes. High-pressure limit rate constants of the title reactions have been calculated in the temperature range of 500-2000 K using the Variflex code including Eckart tunneling corrections. Variable reaction coordinate transition state theory (VRC-TST) has been used for the rate constants of the barrier-less entrance channel. Calculated total rate constants (cm(3) mol(-1) s(-1)) are reported as follows: k(DMK) = 1.32 × 10(2)×T(3.30)exp(503/T), k(EMK) = 3.84 × 10(1)×T(3.51)exp(1515/T), k(iPMK) = 2.08 × 10(1)×T(3.58)exp(2161/T). Group rate constants (on a per H atom basis) for different carbon sites in title reactions have also been provided.  相似文献   
39.
This paper discusses the question of how operational research in general, and discrete event simulation in particular, can help to meet management challenges in hospital-based orthopaedics medicine. It focuses on the reduction of waiting times for elective patients, both for a first outpatient appointment and for the subsequent commencement of in-patient treatment. The research is based on a series of projects carried out by students from the Department of Management Science, University Strathclyde in Stobhill Hospital and the Glasgow Royal Infirmary between 1999 and 2003. An increasingly detailed and complex simulation model was developed for the musculo-skeletal service provided by these hospitals. The paper discusses the application of a modelling methodology—based on the idea of requisite models evolving over time—that is participatory, iterative and focused on enhancing the clients' understanding of the main performance drivers of the service. It concludes that this methodology fits well with successful strategies to sustain reductions in waiting times.  相似文献   
40.
Chemical inhibition of laminar propane flames by organophosphorus compounds has been studied experimentally and computationally using a detailed chemical kinetic reaction mechanism. Both fuel-lean and fuel-rich propane flames were studied to examine the role of equivalence ratio in flame inhibition. The experiments examined a wide variety of organophosphorus compounds. We report on experimental species flame profiles for tri-methyl phosphate (TMP) and compare them with modeled species flame profile results of TMP and di-methyl methyl phosphonate (DMMP). Both experiments and kinetic modeling indicate that inhibition efficiency is effectively the same for all of the organophosphorus compounds examined, independent of the molecular structure of the initial inhibitor molecule. Chemical inhibition is due to reactions involving small P-bearing species HOPO2 and HOPO produced by the organophosphorus compounds (OPCs). Ratios of HOPO2 and HOPO concentrations differ between lean and rich flames, with HOPO2 dominant in lean flames while HOPO dominates in rich flames. Resulting HOPO2 and HOPO species profiles do not significantly depend on the initial source of the HOPO2 and HOPO, and thus are relatively insensitive to the initial OPC inhibitor. A more generalized form of the Twarowski mechanism is developed to account for the results observed, and new theoretical values are determined for heats of formation of the important P-containing species, using the BAC-G2 method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号