首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10297篇
  免费   1061篇
  国内免费   1025篇
化学   2722篇
晶体学   31篇
力学   797篇
综合类   188篇
数学   6539篇
物理学   2106篇
  2024年   20篇
  2023年   78篇
  2022年   148篇
  2021年   238篇
  2020年   247篇
  2019年   244篇
  2018年   237篇
  2017年   317篇
  2016年   370篇
  2015年   255篇
  2014年   463篇
  2013年   807篇
  2012年   550篇
  2011年   523篇
  2010年   473篇
  2009年   585篇
  2008年   625篇
  2007年   675篇
  2006年   612篇
  2005年   559篇
  2004年   475篇
  2003年   420篇
  2002年   437篇
  2001年   401篇
  2000年   352篇
  1999年   340篇
  1998年   275篇
  1997年   237篇
  1996年   206篇
  1995年   182篇
  1994年   145篇
  1993年   114篇
  1992年   105篇
  1991年   92篇
  1990年   71篇
  1989年   57篇
  1988年   49篇
  1987年   50篇
  1986年   46篇
  1985年   53篇
  1984年   57篇
  1983年   18篇
  1982年   38篇
  1981年   22篇
  1980年   21篇
  1979年   24篇
  1978年   13篇
  1977年   17篇
  1976年   11篇
  1972年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Cavitation erosion is caused in solids exposed to strong pressure waves developing in an adjacent fluid field. The knowledge of the transient distribution of stresses in the solid is important to understand the cause of damaging by comparisons with breaking points of the material. The modeling of this problem requires the coupling of the models for the fluid and the solid. For this purpose, we use a strategy based on the solution of coupled Riemann problems that has been originally developed for the coupling of 2 fluids. This concept is exemplified for the coupling of a linear elastic structure with an ideal gas. The coupling procedure relies on the solution of a nonlinear equation. Existence and uniqueness of the solution is proven. The coupling conditions are validated by means of quasi‐1D problems for which an explicit solution can be determined. For a more realistic scenario, a 2D application is considered where in a compressible single fluid, a hot gas bubble at low pressure collapses in a cold gas at high pressure near an adjacent structure.  相似文献   
2.
This mini-review highlights key structural features that should be taken into account when creating ambipolar redox-active closed-shell metal-free molecules. This type of compound is strongly required for the fabrication of all-organic ‘poleless’ batteries and semiconductors. The suggested strategies aimed at stabilization of both oxidized (cationic) and reduced (anionic) redox-states are based on the comprehensive analysis of the most successful structures taken from the recent publications.  相似文献   
3.
Electrospun nonwovens of poly(L-lactide) (PLLA) modified with multiwall carbon nanotubes (MWCNT) and linear ladder-like poly(silsesquioxane) with methoxycarbonyl side groups (LPSQ-COOMe) were obtained. MWCNT and LPSQ-COOMe were added to the polymer solution before the electrospinning. In addition, nonwovens of PLLA grafted to modified MWCNT were electrospun. All modified nonwovens exhibited higher tensile strength than the neat PLA nonwoven. The addition of 10 wt.% of LPSQ-COOMe and 0.1 wt.% of MWCNT to PLLA increased the tensile strength of the nonwovens 2.4 times, improving also the elongation at the maximum stress.  相似文献   
4.
In this paper, we study the local linear convergence properties of a versatile class of Primal–Dual splitting methods for minimizing composite non-smooth convex optimization problems. Under the assumption that the non-smooth components of the problem are partly smooth relative to smooth manifolds, we present a unified local convergence analysis framework for these methods. More precisely, in our framework, we first show that (i) the sequences generated by Primal–Dual splitting methods identify a pair of primal and dual smooth manifolds in a finite number of iterations, and then (ii) enter a local linear convergence regime, which is characterized based on the structure of the underlying active smooth manifolds. We also show how our results for Primal–Dual splitting can be specialized to cover existing ones on Forward–Backward splitting and Douglas–Rachford splitting/ADMM (alternating direction methods of multipliers). Moreover, based on these obtained local convergence analysis result, several practical acceleration techniques are discussed. To exemplify the usefulness of the obtained result, we consider several concrete numerical experiments arising from fields including signal/image processing, inverse problems and machine learning. The demonstration not only verifies the local linear convergence behaviour of Primal–Dual splitting methods, but also the insights on how to accelerate them in practice.  相似文献   
5.
Supramolecular polyurethane ureas are expected to have superior mechanical properties primarily due to the reversible, noncovalent interactions such as hydrogen bonding interactions. We synthesized polyurethane prepolymers from small molecular weight of poly(tetramethylene ether)glycol and isophorone diisocyanates, which were end capped with propylamine to synthesize polyurethane ureas with high contents of urea and urethane groups for hydrogen‐bonding formations to facilitate self‐healing. The effects of polyurethane urea molecular weight (3000 ≤ Mn ≤ 9000), crosslinking, and cutting direction were studied in terms of thermal, mechanical, and morphological properties with an emphasis on the self‐healing efficiency. It was found that the thermal self‐healability was more pronounced as the molecular weight of polyurethane urea decreased, showing a maximum of more than 96% with 3000 Mn when the sample was cut along the stretch direction. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 468–474  相似文献   
6.
7.
《中国化学快报》2020,31(12):3183-3189
Engineered nanomaterials have attracted significantly attention as one of the most promising antimicrobial agents for against multidrug resistant infections. The toxicological responses of nanomaterials are closely related to their physicochemical properties, and establishment of a structure-activity relationship for nanomaterials at the nano-bio interface is of great significance for deep understanding antibacterial toxicity mechanisms of nanomaterials and designing safer antibacterial nanomaterials. In this study, the antibacterial behaviors of well-defined crystallographic facets of a series of Au nanocrystals, including {100}-facet cubes, {110}-facet rhombic dodecahedra, {111}-facet octahedra, {221}-facet trisoctahedra and {720}-facet concave cubes, was investigated, using the model bacteria Staphylococcus aureus. We find that Au nanocrystals display substantial facet-dependent antibacterial activities. The low-index facets of cubes, octahedra, and rhombic dodecahedra show considerable antibacterial activity, whereas the high-index facets of trisoctahedra and concave cubes remained inert under biological conditions. This result is in stark contrast to the previous paradigm that the high-index facets were considered to have higher bioactivity as compared with low-index facets. The antibacterial mechanism studies have shown that the facet-dependent antibacterial behaviors of Au nanocrystals are mainly caused by differential bacterial membrane damage as well as inhibition of cellular enzymatic activity and energy metabolism. The faceted Au nanocrystals are unique in that they do not induce generation of reactive oxygen species, as validated for most antibiotics and antimicrobial nanostructures. Our findings may provide a deeper understanding of facet-dependent toxicological responses and suggest the complexities of the nanomaterial-cell interactions, shedding some light on the development of high performance Au nanomaterials-based antibacterial therapeutics.  相似文献   
8.
We consider the large sparse symmetric linear systems of equations that arise in the solution of weak constraint four‐dimensional variational data assimilation, a method of high interest for numerical weather prediction. These systems can be written as saddle point systems with a 3 × 3 block structure but block eliminations can be performed to reduce them to saddle point systems with a 2 × 2 block structure, or further to symmetric positive definite systems. In this article, we analyse how sensitive the spectra of these matrices are to the number of observations of the underlying dynamical system. We also obtain bounds on the eigenvalues of the matrices. Numerical experiments are used to confirm the theoretical analysis and bounds.  相似文献   
9.
Parallel preconditioners are presented for the solution of general linear systems of equations. The computation of these preconditioners is achieved by orthogonal projections related to the Frobenius inner product. So, minM∈??AM?IF and matrix M0∈?? corresponding to this minimum (?? being any vectorial subspace of ??n(?)) are explicitly computed using accumulative formulae in order to reduce computational cost when subspace ?? is extended to another one containing it. Every step, the computation is carried out taking advantage of the previous one, what considerably reduces the amount of work. These general results are illustrated with the subspace of matrices M such that AM is symmetric. The main application is developed for the subspace of matrices with a given sparsity pattern which may be constructed iteratively by augmenting the set of non‐zero entries in each column. Finally, the effectiveness of the sparse preconditioners is illustrated with some numerical experiments. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
10.
SPECTRUM-PRESERVING ELEMENTARY OPERATORS ON B(X)   总被引:4,自引:0,他引:4  
1.IntroductionLetXbeaninfinitedimensionalcomplexBanachspaceandB(X)theBanachalgebraofallboundedlinearoperatorsonX.ForTEB(X),a(T),asusual,willdenotethespectrumofT.Let4bealinearmapfromB(X)intoitself.4isspectrum-preservingifa(di(T))=a(T)forallTEB(X);4isspectrum-compressingifa(4(T))ga(T)forallTEB(X).Itisclearthatif4isunital(i.e.,ac(I)=I),thenacisspectrum-preserving(spectrum-compressing)ifandonlyif4preservesinvertibilityinbothdirections(preservesinvertibility),i.e.,4(T)isinvertibleifando…  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号