首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ordered mesoporous silica material was synthesized from a low-cost precursor, sugarcane leaf ash, was used as a support matrix for lipase for the production of biodiesel. The mesoporous samples were characterized using Fourier transform infra red spectroscopy. The surface topography and morphology of the mesoporous materials were studied using scanning electron microscope. The pore diameter, pore volume, Brunauer Emmett and Teller surface area of the mesoporous material were determined by N2 gas adsorption technique. Different pore size Santa Barbara Acid-15 (SBA-15) samples were synthesized and their lipase immobilization capacity and specific enzyme activity of immobilization lipase were determined and compared. Lipase from Candida Antarctica immobilized on SBA-15 (C) had shown maximum percentage immobilization and specific enzyme activity. The immobilized lipase mesoporous matrix was used for biodiesel production from crude non-edible Calophyllum inophyllum oil. The percentage yield of fatty acid methyl ester, 97.6 % was obtained under optimized conditions: 100 mg of lipase immobilized on SBA-15, 6:1 methanol to oil molar ratio, the reaction of 2 g C. inophyllum oil with methanol.  相似文献   

2.
A novel hybrid epoxy/nano CaCO3 composite matrix for catalase immobilization was prepared by polymerizing epoxy resin in the presence of CaCO3 nanoparticles. The hybrid support was characterized using scanning electron microscopy and Fourier transform infrared spectroscopy. Catalase was successfully immobilized onto epoxy/nano CaCO3 support with a conjugation yield of 0.67?±?0.01 mg/cm2 and 92.63?±?0.80 % retention of activity. Optimum pH and optimum temperature of free and immobilized catalases were found to be 7.0 and 35 °C. The value of K m for H2O2 was higher for immobilized enzyme (31.42 mM) than native enzyme (27.73 mM). A decrease in V max value from 1,500 to 421.10 μmol (min mg protein)?1 was observed after immobilization. Thermal and storage stabilities of catalase improved immensely after immobilization. Immobilized enzyme retained three times than the activity of free enzyme when kept at 75 °C for 1 h and the half-life of enzyme increased five times when stored in phosphate buffer (0.01 M, pH 7.0) at 5 °C. The enzyme could be reused 30 times without any significant loss of its initial activity. Desorption of catalase from the hybrid support was minimum at pH 7.0.  相似文献   

3.
Human serum albumin (HSA) adsorbed onto silica nanoparticles modified by 3-aminopropyltriethoxysilane (APTES) and polyethyleneimine (PEI) was investigated by differential scanning calorimetry, IR spectroscopy, and photon correlation spectroscopy. The structural alterations of the protein molecules induced from adsorption process were estimated on the basis of temperatures of denaturation transition (T d) of the protein in free (native) and adsorbed form. It was found that adsorption of the protein onto the APTES-modified silica nanoparticles results in an increase in the temperature of denaturation transition from 42 to 47.4 °C. HSA adsorbed onto the PEI-modified silica nanoparticles unfolds extensively.  相似文献   

4.
Surface immobilization of active species onto mesoporous materials is gaining importance, especially in the design of functionalized mesoporous materials as a nanocatalyst through heterogenization of homogeneous catalytic systems. This article summarizes recent work on the synthesis, characterization and catalytic performance of the functionalized mesoporous catalysts performed by the present authors. A cationic rhenium(I) complex was encapsulated into mesoporous Al-MCM-41 molecular sieve using a ion-exchange method, yielding a new photocatalyst to be active for photocatalytic reduction of CO2. Surface functionalization of mesoporous silica SBA-15 with sulfonic acid groups was investigated to give a solid acid catalyst. The chemically modified Fe-containing mesoporous materials, which are active for hydroxylation of phenol, were prepared by a surface-grafting method that iron salts are immobilized onto mesoporous Si-MCM-41 with the help of 3-aminopropyltrimethoxysilane as a linker. A cobalt(III) complex was heterogenized onto mesoporous silica SBA-15 containing carboxylic groups in order to utilize as a solid catalyst for the liquid-phase oxidation of aromatic hydrocarbons.  相似文献   

5.
The CO2 sequestration is one of the most promising solutions to tackle global warming. In this study, spherical mesoporous silica particles (MPS-S) and rod-shaped mesoporous silica particles (MPS-R) loaded with Cu nanoparticles were selectively prepared and employed for CO2 adsorption. For the first time uniform Cu nanoparticles were incorporated into the rod-shaped mesoporous silica particles by post-synthesis modification using both N-[3-(trimethoxysilyl)propyl]ethylenediamine (PEDA) and ethylenediamine (EDA) as coupling agents. The physiochemical properties of the mesoporous and copper grifted silica composites were investigated by CHN elemental analysis, FTIR spectroscopy, thermogravimetric analysis, X-ray diffraction, energy dispersive X-ray spectroscopy (EDX), surface area analysis, scanning, transmission electron microscopy and gas analysis system (GSD 320, TERMO). The mesoporous silica shows highly ordered mesoporous structures, with the rod-shaped particles having a higher surface area than the spherical ones. Copper nanoparticles with an average diameter of 6.0 nm were uniformly incorporated into the MPS-S and MPS-R. Moreover, Cu-loaded mesoporous silica exhibits up to 40% higher CO2 adsorption capacity than the bare MPS. The MPS-R modified with Cu nanoparticles showed a maximum CO2 adsorption capacity of 0.62 mmol/g and the humidity showed a slight negative effect on CO2 uptake process. The enhancement of CO2 adsorption onto transition metal/mesoporous substrates provides basis for imminent CO2 sequestration.  相似文献   

6.
Immobilization of cellulase onto acrylamide grafted acrylonitrile copolymer (PAN) membranes by means of glutaraldehyde has been studied. The bound cellulase was verified by X-ray photoelectron spectroscopy. The activities of free cellulase and immobilized cellulase are determined by measuring the amount of glucose made from carboxymethyl cellulase in the given conditions. Results show that immobilization conditions had some effects on the activity of immobilized cellulase. The immobilized cellulase had a higher Km than free cellulase (0.02 mg/ml) did. The immobilized cellulase had better stability with respect to pH or temperature than free cellulase.  相似文献   

7.
α-Glucosidase was stereoscopically immobilized on the surface of Fe3O4 magnetic nanoparticles, which was modified with APTES, using GA as a cross-linker. This established method had a broad application prospect for screening of enzyme inhibitors.  相似文献   

8.
Mesoporous silica nanoparticles were synthesized by using tannic acid as a pore-forming agent, which is an environmentally friendly, cheap, and non-surfactant template. SEM and TEM images indicated that the tannic acid-templated mesoporous silica nanoparticles (TA-MSNs) are monodisperse spherical-like particles with an average diameter of 195?±?16 nm. The Brunauer–Emmett–Teller (BET) results showed that the TA-MSNs had a relatively high surface area (447 m2/g) and large pore volume (0.91 cm3/g), and the mean pore size was ca. 10.1 nm. Burkholderia cepacia lipase was immobilized on the TA-MSNs by physical adsorption for the first time, and the properties of immobilized lipase (BCL@TA-MSNs) were investigated. The BCL@TA-MSNs exhibited satisfactory thermal stability; strong tolerance to organic solvents such as methanol, ethanol, isooctane, n-hexane, and tetrahydrofuran; and high operational reusability when BCL@TA-MSNs were applied in esterification and transesterification reactions. After recycling 15 times in the transesterification reaction for biodiesel production, over 85 % of biodiesel yield can be maintained. With these desired characteristics, the TA-MSNs may provide excellent candidates for enzyme immobilization.  相似文献   

9.
Rice husk was utilized as a silica source for the synthesis of mesoporous silica (MS), which was further used for the surface modification of iron oxide nanoparticles (IO-NPs) to form mesoporous silica-modified iron oxide nanoparticles (MSIO-NPs). IO-NPs and MSIO-NPs were characterized using FT-IR, XRD, X-ray photoelectron spectroscopy, vibrating sample magnetometry, nitrogen adsorption–desorption, TEM and dynamic light scattering analysis. The catalytic activity of MSIO-NPs was tested for degradation and mineralization of Nile blue sulphate dye (NBS) in Fenton-like oxidation process. The degradation efficiency and total organic carbon (TOC) removal of NBS dye onto MSIO-NPs was found to be 92.46 and 66.58%, respectively, after 20 min of reaction time using 5 mM of H2O2 concentration. Modified generalized kinetic model was developed for TOC removal of dye degradation onto MSIO-NPs, to account for oxidizable compounds, non-oxidizable compounds, and intermediate organic compounds. The intermediate products formed during degradation of NBS dye were detected by LC–MS experiment and ten fragments were identified based on mass to charge ratio (m/z). The mechanistic pathway for degradation of NBS dye onto MSIO-NPs has been proposed.  相似文献   

10.
The potential of the modified magnetic nanoparticles for covalent immobilization of porcine pancreatic α-amylase has been investigated. The synthesis and immobilization processes were simple and fast. The co-precipitation method was used for synthesis of magnetic iron oxide (Fe3O4) nanoparticles (NPs) which were subsequently coated with silica through sol–gel reaction. The amino-functionalized NPs were prepared by treating silica-coated NPs with 3-aminopropyltriethoxysilane followed by covalent immobilization of α-amylase by glutaraldehyde. The optimum enzyme concentration and incubation time for immobilization reaction were 150 mg and 4 h, respectively. Upon this immobilization, the α-amylase retained more than 50 % of its initial specific activity. The optimum pH for maximal catalytic activity of the immobilized enzyme was 6.5 at 45 °C. The kinetic studies on the immobilized enzyme and its free counterpart revealed an acceptable change of Km and Vmax. The Km values were found as 4 and 2.5 mM for free and immobilized enzymes, respectively. The Vmax values for the free and immobilized enzymes were calculated as 1.75 and 1.03 μmol mg?1 min?1, in order, when starch was used as the substrate. A quick separation of immobilized amylase from reaction mixture was achieved when a magnetically active support was applied. In comparison to the free enzyme, the immobilized enzyme was thermally stable and was reusable for 9 cycles while retaining 68 % of its initial activity.  相似文献   

11.
The lipase from Pseudomonas fluorescens (Lipase AK, AKL) was immobilized onto the magnetic Fe3O4 nanoparticles via hydrophobic interaction. Enzyme loading and immobilization yield were determined as 21.4?±?0.5?mg/g and 49.2?±?1.8?%, respectively. The immobilized AKL was successfully used for resolution of 2-octanol with vinyl acetate used as acyl donor. Effects of organic solvent, water activity, substrate ratio, and temperature were investigated. Under the optimum conditions, the preferred isomer for AKL is the (R)-2-octanol and the highest enantioselectivity (E?=?71.5?±?2.2) was obtained with a higher enzyme activity (0.197?±?0.01???mol/mg/min). The results also showed that the immobilized lipase could be easily separated from reaction media by the magnetic steel and remained 89?% of its initial activity as well as the nearly unchanged enantioselectivity after five consecutive cycles, indicating a high stability in practical operation.  相似文献   

12.
采用十六烷基三甲基溴化铵(CTAB)为模板剂,四乙氧基硅烷(正硅酸乙酯,TEOS)为硅源,硝酸为催化剂来制备介孔SiO2,并采用后嫁接法对介孔SiO2进行氨基化改性。利用红外光谱(IR),X射线粉末衍射(XRD),差热-热重分析(DTA-TG),扫描电镜(SEM),元素分析,微电泳法及N2吸附-脱附方法对改性前后的产物进行表征。结果表明氨基已成功嫁接到介孔SiO2孔道中,改性后的介孔SiO2有序度有所下降,但仍为介孔材料;改性之后介孔材料的孔径、比表面积、孔体积均变小。等电点由原来的2.74变为4.75。本文还以氨基修饰的介孔SiO2为载体,通过交联剂戊二醛固定诺维信(Novozymes)工业级漆酶,并采用正交设计法对固定化条件进行了优化。研究表明漆酶经固定化后,其操作稳定性比游离酶高。  相似文献   

13.
CuTAPc-Fe3O4纳米复合粒子及其漆酶固定化研究   总被引:1,自引:0,他引:1  
黄俊  周菊英  肖海燕  龙胜亚  王军涛 《化学学报》2005,63(14):1343-1347
漆酶的固定化研究对基于漆酶催化的光纤生物传感器具有十分重要的意义. 制备了四氨基酞菁铜(CuTAPc)-Fe3O4纳米复合粒子, 并用红外(IR)、场发射扫描电镜(FEG-SEM)、X射线衍射(XRD)、能谱、粒径仪等对其进行了表征. 结果表明形成了以CuTAPc包覆在Fe3O4纳米粒子表面的纳米复合粒子, 粒子呈现不规则球形, 且分布均匀, 粒子平均粒径在50 nm左右. 用此纳米复合粒子通过戊二醛交联法固定了漆酶, 固定后的酶比游离酶具有更好的贮存稳定性及操作稳定性. 这为研制高性能的光纤生物传感器打下了较好的基础.  相似文献   

14.
Epoxy-functionalized Fe3O4–SiO2 core–shell magnetic nanoparticles (epoxy-M-support) were prepared by modification with glycidyloxypropyltrimethoxysilane (GPTMS) and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and fourier transform infrared spectroscopy (FTIR) methods. Pure histidine-tagged recombinant benzaldehydelyase (BAL, EC 4.1.2.38) was efficiently immobilized onto the epoxy-M-support with covalent binding. An immobilized BAL epoxy-M-support system was tested to catalyze the self and cross condensation reactions of aldehydes, and the kinetic resolution of racemic acyloins. The acyloin products were obtained in high yield and with high enantiomeric excesses (?98% ee). The carboligation reactivity of the immobilized enzyme was comparable to that of free enzyme-catalyzed reactions. The covalent immobilization offers high enzyme activity and stability (at least 5 repeats without losing its activity).  相似文献   

15.
To improve the catalysis of pullulanase from Anoxybacillus sp.WB42, Fe3O4@polydopamine nanoparticles (Fe3O4@PDA) were prepared and modified with functional groups for immobilization of pullulanases via covalent binding or ionic adsorption. Immobilized pullulanases had lower thermal stability than that of free pullulanase, whereas their catalysis depended on the surface characteristics of nanoparticles. As for covalent immobilization of pullulanases onto Fe3O4@PDA derivatives, the spacer grafted onto Fe3O4@PDA made the catalytic efficiency of pullulanase increase up to the equivalence of free enzyme but dramatically reduced the pullulanase thermostability. In contrast, pullulanases bounded ionically to Fe3O4@PDA derivatives had higher activity recovery and catalytic efficiency, and their catalytic behaviors varied with the modifier grafted onto Fe3O4@PDA. Among these immobilized pullulanases, ionic adsorption of pullulanase on Fe3O4@PDA-polyethyleneimine-glycidyltrimethylammonium gave a high-performance and durable catalyst, which displayed not only 1.5-fold increase in catalytic efficiency compared to free enzyme but also a significant improvement in operation stability with a half of initial activity after 27 consecutive cycles with a total reaction time of 13.5 h, and was reversible, making this nanoparticle reusable for immobilization.  相似文献   

16.
Direct electron transfer of immobilized copper, zinc‐superoxide dismutase (SOD) onto electrodeposited nickel‐oxide (NiOx) nanoparticle modified glassy carbon (GC) electrode displays a well defined redox process with formal potential of ?0.03 V in pH 7.4. Cyclic voltammetry was used for deposition of (NiOx) nanoparticles and immobilization of SOD onto GC electrode. The surface coverage (Γ) and heterogeneous electron transfer rate constant (ks) of immobilized SOD are 1.75×10?11 mol cm?2 and 7.5±0.5 s?1, respectively. The biosensor shows a fast amperometric response (3 s) toward superoxide at a wide concentration range from 10 µM to 0.25 mM with sensitivity of 13.40 nA µM?1 cm?2 and 12.40 nA µM?1 cm?2, detection limit of 2.66 and 3.1 µM based on anodically and cathodically detection. This biosensor exhibits excellent stability, reproducibility and long life time.  相似文献   

17.
Glucose isomerase was immobilized onto granular chicken bone (BIOBONE?) by adsorption. The amount of activity bound relative to an equal amount of free enzyme was 32?1%, with the estimated specific activity decreasing from ll.l?0.7 to 3.9?0.5 U/mg protein with immobilization. Compared with the free enzyme, immobilized glucose isomerase showed a threefold increase in theKm for fructose and a fivefold decrease in Vmax. High operating temperatures were possible (>55?C), but continuous use and long-term storage studies showed gradual losses of activity. Both the binding and the activity of the bone-immobilized enzyme were highly resistant to treatments with detergent, ethanol, and KC1. Studies to determine mass transfer limitation effects on immobilized glucose isomerase showed that these were insignificant for this system.  相似文献   

18.
The surface grafting onto ultrafine silica via reverse ATRP of methyl methacrylate initiated by peroxide groups introduced onto the surface and conventional ATRP of Styrene initiated by the hybrid nanoparticles were investigated. The introduction of peroxide groups onto the silica surface was achieved by the reaction of hydrogen peroxide with chlorosilyl groups, which were introduced by the treatment of silica with thionyl chloride. Well-defined polymer chains were grown from the nanoparticle surfaces to yield individual particles composed of a silica core and a well-defined, densely grafted outer polymer layer. The polymerization was closely controlled in solution at quite low temperature such as 70 °C. In both cases, linear kinetic plots, linear plots of molecular weight (Mn) versus conversion, in hydrodynamic diameter with increasing conversion, and narrow molecular weight distributions (Mw/Mn) for the grafted polymer samples were observed. Hydrolysis of silica cores by hydrofluoric acid treatment enabled characterization of cleaved polymer using GPC. Ultrathin films of hybrid nanoparticles were examined using TEM and AFM.  相似文献   

19.
A biocompatible and uniform interface based on silica nanoparticles derivatized with amino groups has been constructed for the effective immobilization and sensitive sequence-specific detection of calf thymus DNA. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) results showed that a monolayer of silica nanoparticles can be formed on a gold electrode under our experimental conditions using cysteine self-assembly monolayer as binder medium. Electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy (XPS) verified the successful immobilization of DNA on silica-nanoparticle-modified gold electrodes. Quantitative results demonstrated that enhanced immobilization of single-strand DNA (ss-DNA) up to 1.6×10–8 mol cm–2 could be achieved owing to the larger surface area and the special properties of silica nanoparticles. In addition, hybridization experiments demonstrated that the immobilized ss-DNA on silica nanoparticles could specifically interact with complementary DNA in solutions.  相似文献   

20.
A new hydrophilic and nonionic poly(2-vinyloxazoline)-grafted silica (Sil-VOX n ) phase was synthesized and applied for the separation of nucleosides and nucleobases in hydrophilic interaction chromatography (HILIC). Polymerization and immobilization onto silica were confirmed by using characterization techniques including 1H NMR spectroscopy, elemental analysis, and diffuse reflectance infrared Fourier transform spectroscopy. The hydrophilicity or wettability of Sil-VOX n was observed by measuring the contact angle (59.9°). The chromatographic results were compared with those obtained with a conventional HILIC silica column. The Sil-VOX n phase showed much better separation of polar test analytes than the silica column, and the elution order was different. Differences in selectivity between these two columns indicate that the stationary phase cannot function merely as an inert support for a water layer into which the solutes are partitioned from the bulk mobile phase. To elucidate the interaction mechanism, the separation of dihydroxybenzene isomers was performed on both columns in normal-phase liquid chromatography. Sil-VOX n was very sensitive to the dipole moments of the positional isomers of polycyclic aromatic compounds in normal-phase liquid chromatography. The interaction mechanism for Sil-VOX n in HILIC separation is also described.
Figure
Separation of nucleosides and nucleobases with Sil-VOXn (bottom) and a commercial silica column (top). Mobile phase of acetonitrile and 20 mM ammonium acetate (9:1, v/v). Flow rate 1 ml min-1, column temperature 25 °C. The analytes were as follows 5-iodouracil (1), thymine (2), uracil (3), 4,6-diaminopyrimidine (4), uridine (5), adenosine 2 (6), cytosine (7), cytidine (8), and guanosine (9)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号