首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
纯相钙铝层状双氢氧化物对磷的吸附特性   总被引:2,自引:0,他引:2  
采用乙醇辅助液相共沉淀法制备了纯相Ca-Al-LDH层状双金属氢氧化物,考察了Ca-Al-LDH的投加量、吸附时间、pH值、无机电解质(Na2CO3 ,KCl ,Na2SO4,KNO3)和温度等因素对磷吸附的影响,结果表明,纯相Ca-Al-LDH对磷酸根离子具有很好的吸附性能,最大饱和吸附量可达160.78 mg/g,当pH值为5.1、温度为45 ℃、吸附时间为600 min、LDH投加量为0.6 g/L、磷初始浓度为80 mg/L时,磷的去除率高达95.88%;无机阴离子会抑制磷在吸附剂上的吸附,当Cl-浓度从2.5 g/L升高到25 g/L时,Ca-Al-LDH对磷酸盐的最大饱和吸附量从69.96 mg/g降至53.18 mg/g,降低了23.99%;当SO42-浓度从2.5 g/L升高到25 g/L时,Ca-Al-LDH对磷酸盐的最大饱和吸附量降低了24.79%,其它无机阴离子对磷在吸附剂上的吸附也有一定的影响。 Ca-Al-LDH对水中磷的吸附符合二级动力学方程和Langmuir等温模型。 采用扫描电子显微镜、傅里叶变换红外光谱仪和X射线衍射仪等技术手段对制备的纯相Ca-Al-LDH及其吸附磷酸根后的产物进行表征,揭示了Ca-Al-LDH对磷酸根的吸附可能是静电吸引、化学吸附和阴离子插层等过程协同作用的吸附机理。  相似文献   

2.
In this study, Chitosan and Chitosan-zinc oxide (ZnO) nanocomposite were prepared and applied as a low-cost adsorbent with high adsorption capacity for removing reactive red 198 (RR 198) dye from contaminated water. After preparation, it was characterized using FT-IR, XRD, and SEM. The effect of pH, temperature, time, adsorbent amount, and initial dye concentration were investigated in the removal efficiency of RR 198. The maximum adsorption capacity (qm) obtained from the Langmuir equation was 172.41 mg/g in adsorbent dose of 0.1 g/L, pH: 4, temperature of 25°C, adsorption time of 40 min. The thermodynamic parameters demonstrated the spontaneous and endothermic nature of the adsorption process. Due to the high efficiency of chitosan/ZnO nanocomposite in removal of RR 198 from water and advantages such as high adsorption capacity, simple synthesis, and easy application, it can be used as an effective method in the removal of RR 198 from water.  相似文献   

3.
周凤珍  李文秋  王文静  郭惠玲 《应用化学》2019,36(12):1413-1421
以钙基蒙脱土(Ca-MMT)为载体,研究其对镧(La)的吸附。 采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)和元素mapping分析、傅里叶红外光谱(FT-IR)、BET、X射线荧光光谱分析(XRF)对其晶型结构、表面形态、比表面积、化学结构进行表征,考察了La的初始浓度、pH值、温度对Ca-MMT吸附镧性能的影响,考察了载镧钙基蒙脱土(Ca-MMT@La)的除磷效果。 结果表明:Ca-MMT投入量为10 g/L时,Ca-MMT的平衡吸附量随镧的初始浓度增加而增大,最大吸附量为49.62 mg/g;随着pH值增大,吸附能力增强,pH=6时为最佳pH吸附镧条件,吸附量为38.36 mg/g;随温度的升高,其吸附量先下降再上升,20 ℃吸附能力最大,吸附量为41.23 mg/g。 Langmuir等温吸附方程推断其吸附属于单分子层吸附。 Ca-MMT不具有吸附磷效果,而Ca-MMT@La对磷酸根有很强的吸附能力,吸附量为7.24 mg/g,除磷率为72.41%,其除磷率随含镧量增大而增大。  相似文献   

4.
选取比表面积大且导电性能优良的还原氧化石墨烯(rGO)作为支撑材料,负载还原性强但极易团聚的纳米零价铁(nZVI),制得还原氧化石墨烯负载零价铁(nZVI/rGO)复合材料.通过X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)与X射线光电子能谱(XPS)等测试手段对零价铁的负载情况、材料表面微观形貌与反应前后nZVI/rGO材料表面铁元素的含量与组成进行表征.考察了溶液初始pH值、材料投加量和理论零价铁负载量等因素对nZVI/rGO去除2,4,6-三硝基甲苯(TNT)的影响,研究了nZVI/rGO材料去除TNT的反应机理.通过正交实验可知,nZVI/rGO对含TNT废水的处理在较宽的反应条件范围内都可达到处理要求,在理论零价铁的负载量为3.0 g/g rGO,溶液初始pH为6,材料投加量为40 g/L时效果最佳,可将废水中TNT处理到检出限0.1 mg/L以下.  相似文献   

5.
采用水热法及高温灼烧合成了多孔金属氧化物NiO,并用于水样中四环素(TC)的吸附。使用扫描电镜(SEM)、傅立叶变换红外光谱(FTIR)以及X-射线衍射(XRD)方法进行表征。结果表明,产物呈现团簇的花朵状结构,表面多孔。考察了pH值、吸附时间、TC浓度及温度对NiO吸附能力的影响。得到NiO吸附TC的最佳pH值为7.0,吸附120 min即可达到吸附平衡,当TC浓度由10 mg/L增加到100 mg/L时,吸附量由26.49 mg/g增加到134.84 mg/g。吸附过程符合准二级动力学模型,通过Langmuir模型拟合得出NiO对TC的最大吸附容量为144.90 mg/g。NiO具有可重复使用、成本低廉、制备方法简单,对TC吸附容量高等优点,适用于污染水体中TC类污染物的快速去除。  相似文献   

6.
浮石负载壳聚糖吸附去除水中丙溴磷   总被引:1,自引:0,他引:1  
彭炳先  周爱红 《应用化学》2017,34(4):464-471
通过浮石负载壳聚糖制备了吸附剂壳聚糖/浮石复合物,采用扫描电子显微镜(SEM)、热重分析(TGA)、元素分析、傅里叶红外光谱(FT-IR)、X射线衍射(XRD)和X射线荧光光谱(XRF)等技术手段表征了吸附剂性质,考察了吸附剂量、吸附时间、溶液pH值、离子强度和温度对该吸附剂吸附去除水中丙溴磷的影响,研究了再生吸附剂的吸附性能。结果表明,负载在浮石上的壳聚糖占吸附剂总量的8.69%;在p H值3.0~7.0内,壳聚糖/浮石对丙溴磷的吸附率大于90%;这种吸附剂对丙溴磷的吸附受溶液离子强度影响较小,随温度升高而稍微减小。在溶液温度25℃、pH=7.0、丙溴磷浓度40 mg/L、壳聚糖/浮石剂量为0.7 g/L和吸附平衡时间为90 min条件下,此吸附剂对丙溴磷最大吸附率为93.3%(最大吸附量为53.4 mg/g)。壳聚糖/浮石连续经过3次吸附/再生循环,每次循环对丙溴磷的吸附率下降约12%。可见壳聚糖/浮石通过吸附可有效地去除水中的农药丙溴磷。  相似文献   

7.
Accumulation of chlorpyrifos (CP), a pesticide, causes a significant environmental problem in food, surface/ground waters further to human health. The removal of the CP pollutant in surface/wastewater could be achieved by biochar due to the improved physical and chemical properties. In this work, the CP removal capacities of biochar samples derived from walnut shells at various temperatures from 450 to 900 °C were investigated. The experiments were performed as laboratory batch type study and the adsorption efficiency was determined at various conditions such as adsorbent dosage (10–500 mg/L), sorbate concentrations (100–1500 µg/L), contact time (0–300 min), initial pH (3–10), and the number of recycle.By subtracting the pyrolysis temperature from 450 °C to 900 °C, the surface areas were found to increase from 12.9 m2/g to 353.3 m2/g, respectively.The 143 experimental data were evaluated by a pair of kinetics and isotherm models and the Adaptive Neural Fuzzy Inference System (ANFIS). The developed ANFIS model was 98.56% successful in predicting the CP removal efficiency depending on the adsorption conditions. Walnut Shell Biochar (WSBC) can be applied for CP adsorption with 86.64% removal efficiency under optimum adsorption conditions (adsorbent = 250 µg/L, sorbate = 1000 µg/L, pH = 7.07 and contact time 15 min) thanks to its improved porosity. It was determined that the biochar samples could be reused 5 times. Equilibrium adsorption was observed to conform to the Langmuir isotherm, and the maximum adsorption capacity for WSBC@900 was 3.536 mg/g.  相似文献   

8.
介孔二氧化硅纳米球对水中Mo(VI)的吸附研究   总被引:1,自引:0,他引:1       下载免费PDF全文
陈宏  朱玉  朱亚萍  王悦  励建荣 《化学通报》2020,83(12):1155-1158
本研究制备了介孔二氧化硅纳米球(MSN),并用之吸附脱除水中的Mo(VI)。应用扫描电镜、介孔分析仪、红外光谱等对MSN进行了表征。考察了pH、吸附时间、MSN投加量和温度对水中Mo(VI)脱除率的影响,并在单因素试验基础上通过正交试验法确定了Mo(VI)的最佳脱除条件:pH=3,MSN投加量为 8.5g/L,吸附时间为36h。在优化吸附试验条件下MSN对加标水中Mo(VI)的脱除率为93.6% ~ 97.3%。  相似文献   

9.
The biosorption properties of cadmium(Ⅱ) by pre-treated biomass of Phanerochaete chrysosporium in the form of pellet were investigated. It was found that formaldehyde cross-linking and subsequent alkaline treatment could significantly improve the adsorption capacity of the biomass compared to other sorts of treatments, such as calcium chloride treatment, HCl treatment and,acetone treatment. Biosorption capacity of cadmium was examined as a function of physical and chemical factors including the pH of the metal solution pellet size, temperature and biomass concentration. The cadmium removal efficiency was strongly affected by pH. The maximal adsorption occurred around pH4.5. The pellet size also had a marked influence on the cadmium removal efficiency and the optimum size was the diameter range of 1.5-2.0 mm. The effect of biosorption temperature on cadmium uptake was inconspicuous between 25℃ and 35℃, but there was a notable decrease in cadmium uptake when the temperature reached 40℃. The cadmium removal efficiency increased as the biomass concentration when the initial cadmium ion concentration was 10 mg/L. When the biomass concentration was 2 g/L,the removal efficiency was 99.56%. However, the augment of the. removal efficiency was not obvious when the biomass concentration was more than 2 g/L. On the optimum conditions mentioned above,cadmium concentration could be reduced from 10 ppm down to 0.04 ppm that was below the Chinese National Waste Water Integrated Discharge Standard. In the biosotption process, most of the metal uptake happened during a short period immediately after the adsorption process started. It was observed that the biomass pellets had already adsorbed 83.36% of the total amount of cadmium finally adsorbed within the initial 10 minutes. The cadmium uptake rate decreased gradually afterwards. Sorption equilibrium could almost be established in 12 hours. This indicated that biosorption might consist of two processes:a fast surface binding process opcurring first and a slow membrane diffusion process taking place subsequently.  相似文献   

10.
焙烧层状氢氧化镁铝对水中氟离子的吸附性能   总被引:1,自引:0,他引:1  
研究了焙烧层状氢氧化镁铝(CLDH)对水中氟离子的吸附性能,考察了焙烧温度、吸附时间、吸附剂用量、溶液pH值等条件对吸附的影响.发现在较宽的pH(5.5~9.5)值范围内,CLDH对水中氟离子具有良好的吸附能力,室温下0.2gCLDH可将50mL浓度为15mg/L氟离子溶液处理为符合含氟标准的饮用水.吸附平衡符合Langmuir方程,在60min内达到饱和吸附,室温下饱和吸附量为22.64 mg/g.吸附饱和后的CLDH焙烧再生,循环使用5次后饱和吸附量为10.37 mg/g.  相似文献   

11.
层状氢氧化镁铝焙烧产物对SCN~-的吸附性能   总被引:1,自引:0,他引:1  
研究了层状氢氧化镁铝焙烧产物对SCN-的吸附行为,考察了焙烧温度、吸附温度、时间、pH值等因素对吸附的影响.在SCN-初始浓度为25 mg/L,温度为40℃,焙烧物投加量为2 g/L,pH值为6的条件下,4 h达到吸附平衡,SCN-脱除率可达96.91%.吸附过程符合Langmu ir等温方程式,主要是单分子层的吸热吸附.  相似文献   

12.
Phosphorus removal is significant to prevent the eutrophication of water bodies. Adsorption is a promising method with many attractive advantages. An adsorbent is essential to the adsorption method. To investigate the absorption efficiency of lanthanum oxide-loaded ceramic granules, this study loaded lanthanum oxide onto ceramic granules in two different approaches and obtained two adsorbents called G1 and G2. The effects of the initial concentration of phosphorus, pH, temperature, and interfering anions on the phosphorus adsorption of G1 and G2 were investigated in laboratory experiments. When pH ranged from 3.0 to 8.0, the two adsorbents achieved the optimum phosphorus removal efficiency. At pH 4.0, the removal efficiencies of G1 and G2 were 98.1 and 99.8 %, respectively. Temperature fluctuation had an insignificant effect on removal efficiency. The effect of the presence of interfering anions on the adsorption efficiency was limited, i.e., <10 %. Comprehensive comparison showed that G1 exhibited better performance than G2. The Brunauer–Emmett–Teller specific surface area and total pore volume expanded after modification by 40 and ×6, respectively. The X-ray fluorescence results showed a 42 % (percentage by mass) lanthanum content in the modified adsorbents, some of which existed in the endoporus, whereas others were loaded onto the surface of the ceramic granules. The results of the Fourier Transform infrared spectrometry noted combinations between ceramic granulars and lanthanum oxide, and G1 adsorbed PO4 3? from an aqueous solution.  相似文献   

13.
In this study, the preparation of magnetic Fe3O4/ZIF-8 (MFZ) and its adsorption properties for Cd(II) from water were investigated. Various characterizations demonstrate that the as-prepared MFZ has well magnetic-separation performance and thermal stability. In batch adsorption tests, the effects of pH, initial concentration, and adsorbent dosage were evaluated. According to the findings, when the pH is 7 and the dosage is 150 mg/L, the adsorption capacity for a 40 mg/L Cd(II) solution reaches 102.3 mg/g in 180 min. The Cd(II) adsorption processes was found to correspond to pseudo-first-order kinetics and Langmuir model according to the adsorption kinetics and isotherms. The Langmuir model predicted a maximal saturation adsorption capacity of 160.26 mg/g at 298 K. Thermodynamic analysis revealed that the Cd(II) adsorption is an endothermic, spontaneous process. Ion exchange, coordination reaction, and electrostatic interaction are all involved in Cd(II) adsorption by MFZ. The optimum conditions for Cd(II) adsorption were proposed and confirmed in accordance with the results of the response surface optimization experiments. Furthermore, regeneration tests demonstrate the great repeated regeneration ability of MFZ. According to the anticipated production cost, treating wastewater with a Cd(II) concentration of 40 mg/L would cost roughly US$ 8.35/m3. MFZ showed good potential for Cd(II) removal from water.  相似文献   

14.
The strong color and high total organic carbon (TOC) of laboratory-synthesized azo dye, C.I. Acid Black 24 (AB24), solution was substantially reduced with particles of chemically synthesized nanoscale zerovalent iron (NZVI) under varied conditions of experimental variables such as NZVI dosage, initial dye concentration, and pH. From the results, the synthesized NZVI particles can effectively remove color and TOC of AB24 dye solution under certain conditions. The best removal efficiencies for color and TOC were obtained as 98.9 and 53.8%, respectively, with an initial dye concentration of 100 mg L(-1) and an NZVI dosage of 0.3348 g L(-1). Additionally, the removal rates followed an empirical rate equation with respect to the initial dye concentration as well as the NZVI dosage. The NZVI dosage addition exponentially increments the removal efficiency, with observed empirical reaction rate constants (k) of 0.046-0.603 min(-1) for added NZVI of 0.0335-0.3348 g L(-1). Moreover, the largest unit removal capacity was 609.4 mg of AB24 uptake for each gram of NZVI (i.e., 609.4 mg AB24/g NZVI). Ultimately, the ideal operation conditions were 0.1674-0.3348 g L(-1) of NZVI dosage, 15-30 min of reaction time, and pH 4-9 for 25-100 mg L(-1) of initial dye concentration.  相似文献   

15.
In recent decades, industrial wastewater discharge containing toxic or hazardous manufactured dyes has risen tremendously, creating a serious environmental threat. A new hybrid adsorbent, [email protected]–Mn–Zr synthesized by mixing Fe–Mn–Zr metal oxide composite with polyaniline (PANI), was used to study methyl red (MR) dye removal from aqueous solution. The adsorption process was observed to be influenced by the sonication time, dose of [email protected]–Mn–Zr, and initial concentration of MR dye. At an initial MR dye concentration of 25 mg/L, 0.25 g/L of [email protected]–Mn–Zr dose, 15 min of sonication, and pH 7.0, the maximum MR dye adsorption efficiency of 90.34% was achieved. Kinetic analysis was performed using five different kinetic models, which shows that the pseudo-second-order kinetic model had the best fit among the five models. The Langmuir isotherm best fits the adsorption experiments at pH 7.0, yielding a significant MR dye uptake capacity of 434.78 mgg?1. The most significant adsorption mechanisms that have been observed in uptake of MR dye onto [email protected]–Mn–Zr were electrostatic attraction, π-π bond interactions and hydrogen bonding. Response surface optimization study was performed for optimizing the experimental conditions from which maximum dye removal of 98.19% was obtained at contact time of 12 min, initial MR dye concentration of 15 mg/L and [email protected]–Mn–Zr dose of 0.4 g/L. Use of real wastewater and water samples suggest that there is only 6–19% reduction in the dye removal efficiency as compared to the blank or controlled experiments conducted with deionized water.  相似文献   

16.
重金属离子对生态环境以及人类健康造成了严重的危害,因此处理水体中的重金属离子迫在眉睫。采用共沉淀法,以乙基纤维素为模版,将四氧化三铁(Fe3O4)纳米颗粒与乙基纤维素复合,制备了乙基纤维素磁性复合材料(EC/Fe3O4)。探究了吸附添加量、溶液pH值和吸附时间等因素对溶液中Cu(Ⅱ)吸附过程的影响。结果表明,EC/Fe3O4表现出良好的吸附速率和吸附性能。吸附4 min,可达到吸附平衡状态。在Cu(Ⅱ)浓度为20 mg/L,pH=7,吸附时间为160 min条件下,EC/Fe3O4的单位吸附量qe为76.98 mg/g,最大去除率为94.68%。在经过8次吸附循环后,单位吸附量为62.21 mg/g。  相似文献   

17.
以粉煤灰为原料,采用水热晶化一步法合成沸石,通过XRD和SEM对合成产品进行表征,L9(34)型正交试验研究Cr(Ⅲ)的优化去除条件,对沸石解吸及循环利用的可能性进行评价。结果表明,合成产品为规则的菱形或多面体形NaP1型沸石,直径约为6μm。正交试验表明水中沸石对Cr(Ⅲ)去除影响的主次顺序为Cr(Ⅲ)浓度、反应时间、溶液pH值和沸石加入量,较优水平组合为Cr(Ⅲ)浓度10mg/L、反应时间15min、溶液pH值2和沸石加入量1.5g/L,Cr(Ⅲ)的平均去除率为95.51%。可以使用蒸馏水和HCl洗脱沸石,达到沸石循环利用及洗脱液回用的目的。  相似文献   

18.
通过原子吸收光谱法研究了在不同pH、吸附剂量、Pb2+浓度和吸附时间条件下磷酸酯化改性梨渣吸附Pb2+的行为。结果表明:溶液初始pH 4.2时,Pb2+的吸附达到最大值;酯化梨渣≥10 g/L能除去Pb2+为30 mg/L溶液中的91%的Pb2+。酯化梨渣对Pb2+的吸附符合Langmuir等温模型,其最大吸附能力为43.99 mg/g。Pb2+达到吸附平衡的时间为40 min,准一级反应动力学方程可描述酯化梨渣对Pb2+的吸附过程。  相似文献   

19.
粉煤灰合成Na-X沸石去除废水中镍离子的研究   总被引:4,自引:0,他引:4  
粉煤灰通过碱熔融 水热法合成了Na-X型沸石,研究了Na-X型沸石的用量、吸附时间、溶液pH值、初始镍离子浓度和温度对废水中镍离子去除效果的影响。结果表明,Na-X型粉煤灰沸石对镍离子的去除性能与化学原料合成的13X相当,明显优于粉煤灰。在20℃,pH值为6,沸石用量10g/L,吸附15min时,对初始浓度为20mg/L~150mg/L的镍离子去除率均可达90%以上。镍离子的吸附过程符合Langmiur吸附等温方程式,其单层吸附量为11.2×10-3。粉煤灰沸石重复使用5次,对废水中镍离子的去除率仍高达95%,再生性能良好。  相似文献   

20.
Batch adsorption experiments were carried out for the removal of methylene blue (MB) from aqueous solution using attapulgite as adsorbent. The effects of various parameters such as temperature, contact time, the pH value, and attapulgite dosage on the adsorption performance were investigated. The standard curve and regression equation were established by spectrophotometry. The adsorption experimental results showed that the adsorption equilibrium data were well in accord with Langmuir adsorptive model. The optimal result was acquired under the experimental condition of attapulgite dosage 0.18g, MB concentration 50.0mg/L, pH 10, and adsorption time 20min at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号