首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
ZrSiO4 and coesite were obtained under high-pressure and high-temperature from the nano precursor of a-SiO2 and ZrO2. XRD and Raman measurements indicate that ZrSiO4 was formed at a temperature higher than 920 ℃ under a pressure of 3.6 GPa. As the pressure increased to 3.9 GPa, the ZrSiO4 formation temperature was reduced to 815 ℃. The formation temperature for coesite was 990 ℃ under 3.9 GPa. The lower formation temperature for ZrSiO4, as compared to that for coesite, provided an experimental evidence that the coesite in the Earth's surface usually occurs as inclusions in ZrSiO4.  相似文献   

2.
Millions of macrodiamonds were mined from Cenozoic placers across Eastern Australia, 98% from within the Copeton and Bingara area (85 km across) in the Phanerozoic New England region of New South Wales (NSW). Raman spectroscopy of inclusions in uncut diamond, from the Copeton and Bingara parcels, identifies them as ultrahigh pressure (UHP) macrodiamond formed during termination of subduction by continental collision. Infrared spectral properties of the two parcels are critically similar in terms of nitrogen abundance (low in zoned diamond, high in unzoned diamond), requiring a pair of different growth mechanisms/protoliths. Within each parcel, the degrees of nitrogen aggregation are relatively strong and coherent, but they are so different from each other (moderate aggregation for Bingara, strong for Copeton) that the two parcels require separate primary and local sources. The local sources are post-tectonic alkali basaltic intrusions which captured UHP minerals (garnet, pyroxene, diamond) from eclogite-dominated UHP terranes (density stranded at depth-mantle, lower crust). X-ray diffraction studies on Copeton diamond indicate a normal density, despite previous reports of anomalously high density. For non-fluorescent diamond, a 2nd order Raman peak, which is prominent in theoretical perfect diamond and in African cratonic diamond, is suppressed in Copeton and Bingara UHP macrodiamond. Pervasive deformation during macrodiamond growth probably causes this suppression, the strong nitrogen aggregation, and the exceptional durability documented through industrial use.  相似文献   

3.
高压变质二氧化硅矿物的合成及表征   总被引:1,自引:0,他引:1  
根据高能机械球磨与地球板块碰撞之间具有的碰撞局域性和剪切应力相似的特点, 采用高能机械球磨和静高温高压技术, 以α-石英与石墨混合粉末为原料, 提出了人工合成地表柯石英的一种新方法. 利用高能机械球磨制备了α-石英和石墨纳米非晶混合粉末, 其高温高压合成柯石英的最低条件是970 K和3.7 GPa. 合成的柯石英有10个Raman峰, 分别位于120, 152, 179, 206, 270, 329, 357, 428, 467和521 cm-1, 是目前最全的柯石英Raman谱.  相似文献   

4.
金核银壳纳米粒子薄膜的制备及SERS活性研究   总被引:5,自引:0,他引:5  
采用柠檬酸化学还原法制备金溶胶, 通过自组装技术在石英片表面制备金纳米粒子薄膜, 在银增强剂混合溶液中反应获得金核银壳纳米粒子薄膜. 用紫外-可见吸收光谱仪和原子力显微镜(AFM)研究了不同条件下制备的金核银壳纳米粒子薄膜的光谱特性和表面形貌, 并以结晶紫为探针分子测量了金核银壳纳米粒子薄膜的表面增强拉曼光谱(SERS). 结果表明, 金纳米粒子薄膜的分布、银增强剂反应时间的长短对金核银壳纳米粒子薄膜的形成均有重要影响. 制备过程中, 可以通过控制反应条件获得一定粒径的、具有良好表面增强拉曼散射活性的金核银壳纳米粒子薄膜.  相似文献   

5.
An in-situ Raman Spectroscopic study was conducted to explore the pressure-induced phase transformation of CaMn2O4 to pressures of 73.7 GPa. Group theory yields 24 Raman active modes for CaMn2O4, of which 20 are observed at ambient conditions. With the slight compression below 5 GPa, the pressure-induced contraction compensates the structural distortion induced by a Jahn–Teller (JT) effect, resulting in the occurrence of the zero pressure shifts of the JT-related Raman modes. Upon elevation of pressure to nearby 35 GPa, these Raman modes start to display a significant variation in pressure shift, implying the appearance of a pressure-induced phase transformation. Group factor analyses on all possible structure polymorphs indicate that the high-pressure phase is preferentially assigned to an orthorhombic structure, having the CaTi2O4 structure. The cooperative JT distortion is continuously reduced in the CaMn2O4 polymorph up to 35 GPa. Beyond 35 GPa, it is found that the JT effect was completely suppressed by pressure in the newly formed high-pressure phase. Upon release of pressure, this high-pressure phase transforms to the original CaMn2O4 phase, and continuously remains stable to ambient conditions.  相似文献   

6.
1,2-Dichloroethane (DCE) was loaded into diamond anvil cells and compressed up to 30 GPa at room temperature. Pressure-induced transformations were probed using Raman spectroscopy. At pressures below 0.6 GPa, fluid DCE exists in two conformations, gauche and trans in equilibrium, which is shifted to gauche on compression. DCE transforms to a solid phase with exclusive trans conformation upon further compression. All the characteristic Raman shifts remain constant in fluid phase and move to higher frequencies in the solid phase with increasing pressure. At about 4-5 GPa, DCE transforms from a possible disordered phase into a crystalline phase as evidenced by the observation of several lattice modes and peak narrowing. At 8-9 GPa, dramatic changes in Raman patterns of DCE were observed. The splitting of the C-C-Cl bending mode at 325 cm-1, together with the observation of inactive internal mode at 684 cm-1 as well as new lattice modes indicates another pressure-induced phase transformation. All Raman modes exhibit significant changes in pressure dependence at the transformation pressure. The new phase remains crystalline, but likely with a lower symmetry. The observed transformations are reversible in the entire pressure region upon decompression.  相似文献   

7.
In situ high-pressure Raman spectroscopy studies on LiNH2 (lithium amide) have been performed at pressures up to 25 GPa. The pressure-induced changes in the Raman spectra of LiNH2 indicates a phase transition that begins at approximately 12 GPa is complete at approximately 14 GPa from ambient-pressure alpha-LiNH2 (tetragonal, I) to a high-pressure phase denoted here as beta-LiNH2. This phase transition is reversible upon decompression with the recovery of the alpha-LiNH2 phase at approximately 8 GPa. The N-H internal stretching modes (nu([NH2]-)) display an increase in frequency with pressure, and a new stretching mode corresponding to high-pressure beta-LiNH2 phase appears at approximately 12.5 GPa. Beyond approximately 14 GPa, the N-H stretching modes settle into two shouldered peaks at lower frequencies. The lattice modes show rich pressure dependence exhibiting multiple splitting and become well-resolved at pressures above approximately 14 GPa. This is indicative of orientational ordering [NH2]- ions in the lattice of the high-pressure beta-LiNH2 phase.  相似文献   

8.
High pressure Raman spectroscopic investigations have been carried out on rare earth orthovanadate LuVO4 upto 26 GPa. Changes in the Raman spectrum around 8 GPa across the reported zircon to scheelite transition are investigated in detail and compared with those observed in other vanadates. Co-existence of the zircon and scheelite phases is observed over a pressure range of about 8-13 GPa. The zircon to scheelite transition is irreversible upon pressure release. Subtle changes are observed in the Raman spectrum above 16 GPa which could be related to scheelite ↔ fergusonite transition. Pressure dependencies of the Raman active modes in the zircon and the scheelite phases are reported.  相似文献   

9.
The high-pressure behavior of nitrogen in NaN(3) was studied to 160 GPa at 120-3300 K using Raman spectroscopy, electrical conductivity, laser heating, and shear deformation methods. Nitrogen in sodium azide is in a molecularlike form; azide ions N(3-) are straight chains of three atoms linked with covalent bonds and weakly interact with each other. By application of high pressures we strongly increased interaction between ions. We found that at pressures above 19 GPa a new phase appeared, indicating a strong coupling between the azide ions. Another transformation occurs at about 50 GPa, accompanied by the appearance of new Raman peaks and a darkening of the sample. With increasing pressure, the sample becomes completely opaque above 120 GPa, and the azide molecular vibron disappears, evidencing completion of the transformation to a nonmolecular nitrogen state with amorphouslike structure which crystallizes after laser heating up to 3300 K. Laser heating and the application of shear stress accelerates the transformation and causes the transformations to occur at lower pressures. These changes can be interpreted in terms of a transformation of the azide ions to larger nitrogen clusters and then polymeric nitrogen net. The polymeric forms can be preserved on decompression in the diamond anvil cell but transform back to the starting azide and other new phases under ambient conditions.  相似文献   

10.
The Kimi Unit of the Rhodope Metamorphic Province (RMP), NE Greece, experienced ultrahigh-pressure metamorphism (UHPM), as documented by the unequivocal presence of diamond microinclusions in metapelitic garnet porphyroblasts. Certain peculiar lozenge-shaped 2-8 microm sized inclusions in diamond-bearing garnets reveal a broad composite and asymmetric triplet band (phase XXX) at approximately 1331 cm(-1) in their Raman spectra acquired with a 632.8 nm He-Ne laser, initially attributed to an sp(3)-hybridized C-polymorph. These have been meticulously re-investigated by means of combined 2-wavelength (514.5 nm/632.8 nm laser) Raman microscopy. Raman mapping has been extensively employed in order to examine the spatial distribution of phase XXX and of other phases in these polyphase inclusions and to explore for additional Raman bands. The triplet band at approximately 1331 cm(-1) measured with the 632.8 nm laser shifts to much higher wavenumbers ( approximately 4966 cm(-1)) when excited with a 514.5 nm Ar(+) laser, proving that the XXX triplet is not a real Raman band but a luminescence one at approximately 691.1 nm. Numerous hypotheses on the nature of the mysterious phase XXX (e.g. Cr(3+)-bearing mineral, carbonate, C polymorph, gas, organic phase) are explored and discussed but all are shown to be unsatisfactory. It is suggested that XXX occurs as nanocrystals that luminesce strongly giving the appearance (in Raman maps) of being larger.  相似文献   

11.
Both X-ray diffraction and Raman spectroscopy measurement were carried out on the same powder sample of CuGeO(3)(III) in a diamond anvil cell to high pressures at room temperature. The phase transformation of (III)-(IV) phase was observed at about 7GPa with both methods and the results were also in accord with previous powder diffraction and Raman measurements, respectively. However, the powder diffraction data were strikingly different from those reported in a recent single-crystal study on the phase (III). It is, therefore, evident that the phase transformations in CuGeO(3)(III) would be as complicated as those in CuGeO(3)(I) and that the monoclinic phase obtained from single-crystal phase (III) at approximately 7GPa is not the phase (IV) previously observed but rather a new phase (IVa) in CuGeO(3).  相似文献   

12.
Raman-based geobarometry has recently become increasingly popular because it is an elegant way to obtain information on peak metamorphic conditions or the entire pressure-temperature-time (P-T-t) path of metamorphic rocks, especially those formed under ultrahigh-pressure (UHP) conditions. However, several problems need to be solved to get reliable estimates of metamorphic conditions. In this paper we present some examples of difficulties which can arise during the Raman spectroscopy study of solid inclusions from ultrahigh-pressure metamorphic rocks.  相似文献   

13.
This work aims to determine the formation mechanism as well as the major mineral and inclusions of black-green serpentine jade by Raman spectroscopy. Scanning electron microscopy with energy-dispersive spectrometry was used to analyze the chemical composition of the inclusions and major mineral. The major mineral of black-green serpentine jade was antigorite, and the inclusions were actinolite, chlorite, calcite, quartz, magnetite, and goethite. Jade quality was preliminarily evaluated based on the area ratio of antigorite to the inclusions by optical microscopy. Formation mechanism of black-green serpentine jade was inferred based on the analysis of the inclusions, which demonstrated a new application of Raman spectroscopy in mineralogy.  相似文献   

14.
通过原位高压拉曼光谱和X射线衍射对ZnNb2O6晶体在29 GPa以下的结构转变进行了研究.拉曼光谱显示, 多数拉曼峰强度减弱, 且随着压力增加向高波数方向移动.压力频移曲线分别在10, 16 和20 GPa处形成了拐点.原位X射线衍射谱在10.6 GPa以上有旧峰消失和新峰出现.结果分析表明, ZnNb2O6钶铁矿结构压缩过程中发生了一个可逆压致相变, 此相变从10 GPa左右开始, 到16 GPa左右完成, 继续增加压力到20 GPa以上则形成无序状态.  相似文献   

15.
Phase behavior of a synthetic orthoenstatite in a diamond-anvil cell has been studied up to ∼22 GPa by using Raman spectroscopy at room temperature. Under quasi-hydrostatic conditions, orthoenstatite undergoes a reversible phase transformation at an apparent transition pressure of ∼10 GPa for compression and ∼9.5 GPa for decompression. The 3d transition-metal cations, e.g., Fe2+ and Ni2+, show only a minor effect on the transition pressure within 10 wt% of addition. All the Raman frequencies in both orthoenstatite and its high-pressure phase increase monotonically with increasing pressure. The amount of forward or backward transition is fixed at a given pressure and forms a hysteresis loop in the transition %-pressure plan. The type for the present metastable phase transition is inferred to be of first order and the high-pressure polymorph may be the intermediate between orthoenstatite and the high-pressure clinoenstatite (i.e., the high-P C2/c phase). A mechanism based on Mnyukh's edgewise model of interface motion has been suggested to account for the observed phenomena.  相似文献   

16.
The response of pyrene crystals to high pressure was examined using Raman and FTIR spectroscopies. Raman spectra of external and internal modes were measured up to 11 GPa. Changes in the external modes were observed at approximately 0.3 GPa, indicating the onset of a phase transition. We demonstrated that at this pressure pyrene I (P2(1)/a, 4 mol/unit cell) transforms to pyrene III (P2(1)/a, 2 mol/unit cell). Further increase of pressure produced a gradual broadening of the internal modes and an increase of fluorescence background, indicating the formation of another phase above 2.0 GPa. Irreversible chemical changes were observed upon gradual compression to 40 GPa. FTIR spectroscopy of the recovered product indicated a transformation of pyrene into an amorphous hydrogenated carbon (a-C:H) structure.  相似文献   

17.
By employing first-principles metadynamics simulations, we explore the 300 K structures of solid hydrogen over the pressure range 150-300 GPa. At 200 GPa, we find the ambient-pressure disordered hexagonal close-packed (hcp) phase transited into an insulating partially ordered hcp phase (po-hcp), a mixture of ordered graphene-like H(2) layers and the other layers of weakly coupled, disordered H(2) molecules. Within this phase, hydrogen remains in paired states with creation of shorter intra-molecular bonds, which are responsible for the very high experimental Raman peak above 4000 cm(-1). At 275 GPa, our simulations predicted a transformation from po-hcp into the ordered molecular metallic Cmca phase (4 molecules∕cell) that was previously proposed to be stable only above 400 GPa. Gibbs free energy calculations at 300 K confirmed the energetic stabilities of the po-hcp and metallic Cmca phases over all known structures at 220-242 GPa and >242 GPa, respectively. Our simulations highlighted the major role played by temperature in tuning the phase stabilities and provided theoretical support for claimed metallization of solid hydrogen below 300 GPa at 300 K.  相似文献   

18.
The color varieties of spodumene (green spodumene, kunzite) from Nilaw mine (Nuristan, Afghanistan) have been investigated by microthermometry and Raman spectroscopy analyses. These minerals are rich in primary and secondary fluid inclusions. Measured values of temperature homogenization (T(h)) and pressure (P) for selected fluid-inclusion assemblages (I-IV) FIA in green spodumene and (I-II) FIA in kunzite ranges from 370 to 430°C, 1.16 to 1.44 kbar and 300 to 334°C, 0.81 to 1.12 kbar, respectively. The brine content and concentration varies from 4.3 to 6.6 wt.% eq. NaCl. Numerous and diverse mineral phases (quartz, feldspars, mica, beryl, zirconium, apatite, calcite, gypsum) present in this mineral as solid inclusions were studied by Raman microspectroscopy. Raman spectra of selected fluid, organic and solid inclusions were collected as line or rectangular maps and also depth profiles to study their size and contents. There appeared very interesting calcite (156, 283, 711 and 1085 cm(-1)), beryl (324, 397, 686, 1068 and 3610 cm(-1)), topaz (231, 285, 707, 780 and 910 cm(-1)) and spodumene (355, 707 and 1073 cm(-1)) inclusions accompanied by fluid and/or organic inclusions (liquid and gas hydrocarbons) with bands at 2350 cm(-1) (CO(2), N(2)), 2550 cm(-1) (H(2)S) and 2900 cm(-1) (C(2)H(6)-CH(3)). Some solid inclusions contain carbonaceous matter (D-band at ca. 1320 cm(-1) and/or G-band at ca. 1600 cm(-1)).  相似文献   

19.
The reported pressure-induced amorphization in α-NaVO3 has been re-investigated using Raman spectroscopy. Discontinuous changes are noted in the Raman spectrum above 5.6 GPa implying large structural changes across the transition. The decrease in frequency of the V-O stretching mode across the transition suggests that the vanadium atom may be in octahedral coordination in the high pressure phase. Excessive broadening of the internal modes is observed above 6 GPa. New peaks characteristic of a crystalline phase gain in intensity at higher pressures in the bending modes region; however, the transformation is not complete even at 13 GPa. Co-existence of phases is noted over a significant pressure range above the onset of transition. Pressure released spectrum is found to be a mixture of crystalline α-phase, traces of crystalline β-phase and highly disordered phase consisting of V-O units in five- and six-fold coordination.  相似文献   

20.
Vibrational spectroscopy has been used to investigate the room-temperature high-pressure phases of the energetic material hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). The pressure-induced alterations in the spectral profiles were studied in a compression sequence to 30.2 GPa using Raman spectroscopy and to 26.6 GPa using far-infrared spectroscopy. At pressures near 4.0 GPa, several changes become immediately apparent in the Raman spectrum, such as large frequency shifts, mode splittings, and intensity changes, which are associated with a phase transition from alpha-RDX to gamma-RDX. Our study extends the kinetic stability of gamma-RDX to pressures near 18.0 GPa. Evidence for a new phase was found at pressures between 17.8 and 18.8 GPa and is based on the appearance of new vibrational bands and associated changes in intensity patterns. The new phase has vibrational characteristics that are similar to those of beta-RDX, suggesting the two polymorphs share a related crystal structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号