首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel steroidal (6R)‐spiro‐1,3,4‐thiadiazoline derivatives were synthesized by the cyclization of steroidal thiosemicarbazones with acetic anhydride, screened in vitro against antibacterial activity using disc‐diffusion method and the minimum inhibitory concentration. The results showed that steroidal thiadiazoline derivatives exhibited better antibacterial activity than the steroidal thiosemicarbazone derivatives. Chloro and acetoxy substituents on the 3β‐position of the steroidal thiadiazoline ring increased the antibacterial activity. Among all the compounds, compound 7 and 8 were found better inhibitors of both types of bacteria (Gram‐positive and Gram‐negative) as compared to the respective drug amoxicillin. All the synthesized compounds were well characterized by spectroscopic methods such as IR, 1H‐NMR, 13C‐NMR mass, and elemental analysis and their stereochemistry was also discussed.  相似文献   

2.
In connection with our studies on antibacterial active compounds in the class of new oxazolidinones against Gram‐positive (Staphylococcus aureus) and Gram‐negative (Escherichia coli) strains, some molecular modifications were attempted. In this study, molecular modifications of 4‐aminomethyloxazolidin‐2‐ones ( 3a ) to the corresponding 4‐acylaminomethyloxazolidin‐2‐one derivatives ( 3c–d ) and preparations of the represented twin‐drug type molecules ( 10–14 ) were investigated. Some additional 4‐dialkylaminomethyloxazolidin‐2‐ones ( 2 ) were also synthesized. The synthesized compounds were evaluated for antibacterial activity with Gram‐positive (S. aureus) and Gram‐negative (E. coli) strains.  相似文献   

3.
Thiazole and bisthiazole derivatives represent a prevalent scaffold in the antimicrobial drug discovery. Therefore, we have decided to synthesize some new series of 4,5′‐bisthiazoles. A total of 17 compounds were synthesized, their structural elucidation being based on elemental analysis (C,H,N,S) and spectroscopic data (MS and 1H NMR). Their in vitro antimicrobial activities were assessed against several Gram‐positive and Gram‐negative bacteria strains and also against one fungal strain (Candida albicans) using the difusimetric method. Some of the compounds showed modest to good antibacterial activity against Gram‐negative Escherichia coli and Salmonella typhimurium and Gram‐positive Staphylococcus aureus and Bacillus cereus bacterial strains. All of the synthesized compounds showed moderate to very good antifungal activity against C. albicans.  相似文献   

4.
A series of Pyrido[2,3‐d]pyrimidine have been synthesized through a reaction of cyanoacetylurea derivatives with aromatic aldehydes or Arylidines. Reaction of compound 1 with aromatic arylidine derivatives or arylhydrazones gave Chromeno[3,4‐c]pyridine, Pyridine, Pyrimido[2,3‐c]pyridazine, Enediamines, and Pyridazine derivatives. All the synthesized compounds were confirmed by spectral studies and screened for their in antibacterial activity against Staphylococcus aureus (Gram positive) and Escherichia coli (Gram negative) bacterial strains. All the compounds were weak to good active against the tested bacterial strains on comparing with the standard drug gentamicin.  相似文献   

5.
A series of novel fused thiazolo[3,2‐a]pyrimidin‐3‐ol derivatives have been synthesized by reaction of fused pyrimidine‐thiones with 4‐substituted phenacyl bromide/3(2‐bromoacetyl)coumarin in refluxing acetic acid with good yields. All the synthesized compounds were confirmed by spectral studies and screened for their in vitro antibacterial activity against Staphylococcus aureus, Bacillus thuringiensis (Gram positive), Escherichia coli, and Klebsiella pneumoniae (Gram negative) bacterial strains. Activity results revealed that all the compounds were weak to good active against the tested bacterial strains on comparing with the standard drug gentamicin.  相似文献   

6.
1,3‐Dipolar cycloaddition reactions of N‐cyclohexyl maleimide ( 1 ) with azomethine N‐oxide ( 2 ) have afforded novel isoxazolidine ( 3 ) in excellent yield. Their structures have been characterized from their IR, 1H‐NMR, 13C‐NMR, 1H,1H‐COSY, MS(ESI), and elemental analysis techniques. In vitro antibacterial activity of the synthesized compounds were investigated against a representative panel of pathogenic strains specifically two Gram‐positive bacteria (Staphylococcus aureus and Streptococcus pyogenes ) and two Gram‐negative bacteria (Pseudomonas aeruginosa and Escherichia coli ) using agar‐well diffusion assay. Some of the compounds ( 3a , 3k , 3n , and 3o ) exhibited promising antibacterial activities. All the synthesized compounds have also been screened for their antioxidant activities and were found to be significantly active.  相似文献   

7.
Some novel [1,2,4]triazolo[3,4‐b][1,3,4]thiadiazole derivatives were synthesized from aryl acetic acids. All the synthesized derivatives were selected for the screening of antibacterial potential against Gram‐positive bacteria [Staphylococcus aureus (MTCC 3160) and Micrococcus luteus (MTCC 1538)] and Gram‐negative bacteria [Escherichia coli (MTCC 1652) and Pseudomonas aeruginosa (MTCC 424)] and antifungal potential against Aspergillus niger (MTCC 8652) and Candida albicans (MTCC 227), and free radical scavenging activity through 2,2‐diphenyl‐2‐picrylhydrazyl hydrate method. The compounds TH‐4 , TH‐13 , and TH‐19 were found to be more potent antimicrobial agents compared to standard drugs. The compounds TH‐3 , TH‐9 , and TH‐18 also showed significant antimicrobial activity. The compound TH‐13 showed antioxidant activity with IC50 value better than the standard compound. The structures of all the synthesized compounds were confirmed by Fourier transform infrared, 1H‐NMR, liquid chromatography–mass spectrometry, and CHN analyzer.  相似文献   

8.
A total of 17 new N‐substituted derivatives ( 2b , 2c , 2d , 2e , 2f , 2g , 2h , 2i , 2j , 2k and 3b , 3c , 3d , 3e , 3f , 3g , 3h ) of 5‐((2‐phenylthiazol‐4‐yl)methylene) thiazolidine‐2,4‐dione ( 2a ) and 5‐(2,6‐dichloro‐ benzylidene)thiazolidine‐2,4‐dione ( 3a ) were synthesized. The structural elucidation of the newly synthesized compounds was based on elemental analysis and spectroscopic data (MS, 1H NMR, 13C NMR), and their antimicrobial activities were assessed in vitro against several strains of Gram‐positive and Gram‐negative bacteria and one fungal strain (Candida albicans) as growth inhibition diameter. Some of them showed modest to good antibacterial activity against Gram‐negative Escherichia coli and Salmonella typhimurium and Gram‐positive Staphylococcus aureus, Bacillus cereus, and Enterococcus fecalis bacterial strains, whereas almost all the compounds were inactive against Listeria monocytogenes. All of the synthesized compounds showed moderate to very good activity against C. albicans.  相似文献   

9.
A series of novel 4‐aminoquinoline 1,3,5‐triazine derivatives were synthesized and characterized by FTIR, 1H‐NMR, 13C‐NMR, MS, and elemental analysis. The antibacterial activities of synthesized compounds were tested against three Gram‐positive bacteria, namely Bacillus subtilis (NCIM‐2063), Bacillus cereus (NCIM‐2156), and Staphylococcus aureus (NCIM‐2079), and four Gram‐negative bacteria, namely Proteus vulgaris (NCIM‐2027), Proteus mirabilis (NCIM‐2241), Escherichia coli (NCIM‐2065), and Pseudomonas aeruginosa (NCIM‐2036), using ciprofloxacin as reference standard drug. Results showed compound 9a and 9e as potent antibacterial agents against all bacterial strains except Bacillus cereus (NCIM‐2156). Copyright © 2014 HeteroCorporation  相似文献   

10.
《中国化学会会志》2017,64(1):36-42
Substituted‐1,2,4‐triazines were conveniently synthesized in one pot by the cyclization of arylnitroformaldehyde hydrazone derivatives 1 and 5 with different primary amines in ~37% formaldehyde solution. The synthesized compounds were arranged into novel mono‐, bis‐, and tris‐nitro‐1,2,4‐triazine derivatives 2 , 3 , 4 , 6 , and 7 . The antibacterial and antifungal activity of the synthesized compounds were screened against bacterial strains Escherichia coli (as Gram − ve) and Staphylococcus aureus (as Gram + ve), and fungal strains Aspergillus flavus and Candida albicans . All the synthesized compounds exhibit various patterns of inhibitory activity on the two pathogenic bacterial strains. However, the same compounds showed no activity against the tested fungal strains.  相似文献   

11.
A series of novel 5‐(2,3,4,5‐tetrahydro‐1H‐chromeno[2,3‐d]pyrimidin‐5‐yl)pyrimidione derivatives have been synthesized from substituted salicylaldehydes and barbituric acid or 2‐thiobarbituric acid in water catalyzed by phase transfer catalysis of triethylbenzyl ammonium chloride (TEBA). Elemental analysis, IR, 1H NMR, and 13C NMR elucidated the structures of all the newly synthesized compounds. In vitro antimicrobial activities of synthesized compounds have been investigated against Escherichia coli, Bacillus subtilis, Staphylococcus aureus, and Pseudomonas aeruginosa. These newly synthesized derivatives exhibited significant in vitro antibacterial activity.  相似文献   

12.
Organometallic macromolecules such as ferrocenyl bis‐pyrazoline ( 2 , 3 ) and bis‐pyrimidine ( 4 , 5 ) derivatives were synthesized by reacting ferrocenyl bis‐chalcone 1 with thiosemicarbazide/phenylhydrazine/guanidine hydrochloride/thiourea, respectively, under microwave irradiation. Ferrocenyl bis‐chalcone 1 was synthesized by reacting acetyl ferrocene with terephthalaldehyde. Synthesized compounds were characterized by using IR, 1H NMR, 13C NMR, EI‐MS, and elemental analysis. In vitro antibacterial activity against two Gram‐negative and two Gram‐positive bacteria was determined by the disc diffusion assay. Moreover, minimum inhibition concentrations were also measured with reference to chloramphenicol. Thioamide functionally containing ferrocenyl bis‐pyrazoline derivative 2 shows the best antibacterial activity on Escherichia coli and Salmonella typhimurium, among all tested compounds including the reference drug chloramphenicol. The structure–activity relationship is also developed by using computational calculations with density functional theory (DFT)/B3LYP method.  相似文献   

13.
A series of new 1,3,4‐oxadiazole/thiadiazole and 1,2,4‐triazole derivatives have been synthesized starting from 2‐aryl‐4‐methylthiazol‐5‐carbohydrazides and isonicotinic acid hydrazide. All the newly synthesized compounds were characterized by IR, 1H NMR, 13C NMR, and mass spectrometry. The synthesized compounds were screened for their antibacterial and antifungal activity, assessed as growth inhibition diameter. Some of them showed good antibacterial activity against gram positive Staphylococcus aureus, while the antibacterial activity against Listeria monocytogenes, Escherichia coli, and Salmonella typhymurium and antifungal activity against Candida albicans was modest. None of the tested compounds showed inhibitory activity against gram positive bacteria Enterococcus faecalis and Bacillus cereus and against gram negative bacteria Pseudomonas aeruginosa.  相似文献   

14.
A novel series of (4‐fluorophenyl)(4‐(naphthalen‐2‐yl)‐6‐aryl‐2‐thioxo‐2,3‐dihydropyrimidin‐1(6H)‐yl)methanone derivatives were synthesized from reaction of 6‐(naphthalen‐2‐yl)‐4‐aryl‐3,4‐dihydropyrimidine‐2(1H)‐thiones with 4‐fluorobenzoylchloride in dichloromethane in the presence of triethylamine. The synthesized compounds were screened for antibacterial activity against Gram positive bacteria, namely, Staphylococcus aureus ATCC25923 and Listeria monocytogenes MTCC657, and Gram negative bacteria, namely, Escherichia coli ATCC25922 and Klebsiella pneumoniae ATCC700603, respectively. Some of the tested compounds showed significant antimicrobial activity.  相似文献   

15.
Imidazo[4,5‐c ]pyrazole derivatives ( 3a–f , 4a–f , and 5a–f ) were efficiently synthesized by one‐pot three‐component reactions using CeO2–MgO as the catalyst. The synthesized compounds were characterized by IR, 1H NMR, 13C NMR, and mass spectroscopic analyses. The in vitro antimicrobial activity of the synthesized compounds against various bacterial and fungal strains was screened. Compound 3b was highly active [minimum inhibitory concentration (MIC): 0.5 μg/mL] against Gram‐positive Staphylococcus aureus , and compounds 3b , 3f , 4d , and 4e were highly active (MIC: 0.5, 2, 2, and 0.5 μg/mL, respectively) against Gram‐negative Pseudomonas aeruginosa and Klebsiella pneumoniae , relative to standard ciprofloxacin in the antibacterial activity screening. Compounds 3b and 4f were highly active (MIC: 4 and 0.5 μg/mL, respectively) against Aspergillus fumigatus and Microsporum audouinii in the antifungal activity screening compared with the clotrimazole standard.  相似文献   

16.
The title compounds, 7‐aryl‐5,6‐dihydro‐14‐aza[1]benzopyrano[3,4‐b]phenanthren‐8H‐ones 3a , 3b , 3c , 3d , 3e , 3f , 3g , 3h , 3i , 3j , 3k , 3l have been synthesized by reacting various 4‐hydroxy coumarins 1a , 1b , 1c with 2‐arylidene‐1‐tetralones 2a , 2b , 2c , 2d in the presence of ammonium acetate and acetic acid under Krohnke's reaction condition. The structures of all the synthesized compounds were supported by analytical, IR, 1H‐NMR, and 13C‐NMR data. All the synthesized compounds 3a , 3b , 3c , 3d , 3e , 3f , 3g , 3h , 3i , 3j , 3k , 3l have been screened for their antibacterial activities against Escherichia coli (Gram ?ve bacteria), Bacillus subtilis (Gram +ve bacteria), and antifungal activity against Candida albicans (Fungi). J. Heterocyclic Chem., (2011).  相似文献   

17.
In attempt to search for more potent antimicrobial agents, a series of 7‐nitro‐1‐(piperidin‐4‐yl)‐4,5‐dihydro‐[1,2,4]triazolo[4,3‐a]quinoline‐derived sulphonamides were synthesized. Their structures were established by elemental analyses, IR, and NMR (1H and 13C) spectral data. The antibacterial activity of the obtained compounds was investigated against different Gram‐negative (Escherichia coli and Pseudomonas aeruginosa) and Gram‐positive (Bacillus subtilis and Staphylococcus aureus) bacteria and antifungal activity against two fungal strains (Aspergillus niger and Aspergillus clavatus) using disk diffusion method at various concentrations (20, 40, 60, and 80 μg/mL). The study reveals that most of the title compounds showed significant antibacterial and fungal activity when compared with their respective standards streptomycin and griseofulvin.  相似文献   

18.
A novel series of 2‐(5‐(4‐(1H‐benzo[d][1,2,3]triazol‐1‐yl)phenyl)‐4,5‐dihydro‐1H‐pyrazol‐3‐yl)phenols derivative has been synthesized from (E)‐3‐(4‐(1H‐benzo[d][1,2,3]triazol‐1‐yl)phenyl)‐1‐(2‐hydroxyphenyl)prop‐2‐en‐1‐ones in ethanol and hydrazine hydrate under reflux condition. The synthesized compounds were screened for antibacterial activity against Gram‐positive bacteria viz Staphylococcus aureus and Bacillus subtilis and Gram‐negative bacteria viz Escherichia coli and Salmonella typhi, respectively. Some of the tested compounds showed significant antimicrobial activity. IR, 1H NMR, mass spectral data, and elemental analysis elucidated the structures of all the newly synthesized compounds.  相似文献   

19.
Chloro, fluoro, and nitro derivatives of 7‐amino‐5‐aryl‐6‐cyano‐5H‐pyrano pyrimidin‐2,4‐diones were produced by reacting malononitrile, barbituric acid, and aromatic aldehydes together with a DABCO catalyst in an aqueous one‐pot reaction. This is the first report of these compounds being synthesized with DABCO as a catalyst, which produced the compounds in yields in excess of 90%. The 2,4‐difluoro derivative ( 11 ) was novel. The structures of the synthesized compounds were elucidated by means of 1H, 13C, and 2D NMR spectroscopy. Compound 2 (2‐Cl derivative) had MBC values of <200μM against both Staphylococcus aureus and MRSA, and the 2‐nitro derivative 5 had an MBC of 191μM against the Gram–ve Escherichia coli. The synthesized compounds were also tested for their anticancer activity against a HeLa cell line, where all the compounds showed better activity (IC50 values between 129μM and 340μM) than 5‐fluorouracil, a commonly known anticancer drug.  相似文献   

20.
In this study, we have synthesized 1‐(4,6‐disubstitutedpyrimidin‐2‐yl)‐3‐(3,5‐dinitrobenzoyl)‐thiourea derivatives ( 1a , 1b , 1c , 1d , 1e , 1f , 1g , 1h ) and N‐[(2Z)‐3‐(4,6‐disubstitutedpyrimidin‐2‐yl)‐4‐phenyl‐1,3‐thiazol‐2(3H)‐ylidene]‐3, 5‐dinitrobenzamide ( 2a‐2h ) analogues and characterized by IR spectroscopy, NMR spectroscopy, elemental analysis, and single crystal X‐ray diffraction data. The compounds ( 2a‐2h ) were screened for antimicrobial activity against Gram positive, Gram negative, and fungal species. The results of antimicrobial study indicated that compounds showed most potential and appreciable antibacterial and antifungal activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号