首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
This paper reports the first characterization of the (NH(3))(n)NH+ cluster series produced by a 252Cf fission fragments (FF) impact onto a NH(3) ice target. The (NH(3))(n=1-6)NH+ members of this series have been analyzed theoretically and experimentally. Their ion desorption yields show an exponential dependence of the cluster population on its mass, presenting a relative higher abundance at n = 5. The results of DFT/B3LYP calculations show that two main series of ammonium clusters may be formed. Both series follow a clear pattern: each additional NH(3) group makes a new hydrogen bond with one of the hydrogen atoms of the respective {NH(3)NH}+ and {NH(2)NH(2)}+ cores. The energy analysis (i.e., D-plot and stability analysis) shows that the calculated members of the (NH(3))(n-1){NH(2)NH(2)}+ series are more stable than those of the (NH(3))(n-1){NH(3)NH}+ series. The trend on the relative stability of the members of more stable series, (NH(3))(n-1){NH(2)NH(2)}+, shows excellent agreement with the experimental distribution of cluster abundances. In particular, the (NH(3))4{NH(2)NH(2)}+ structure is the most stable one, in agreement with the experiments.  相似文献   

2.
Hydrocarbon-soluble model systems for the calcium-amidoborane-ammine complex Ca(NH(2)BH(3))(2)?(NH(3))(2) were prepared and structurally characterized. The following complexes were obtained by the reaction of RNH(2)BH(3) (R = H, Me, iPr, DIPP; DIPP = 2,6-diisopropylphenyl) with Ca(DIPP-nacnac)(NH(2))?(NH(3))(2) (DIPP-nacnac = DIPP-NC(Me)CHC(Me)N-DIPP): Ca(DIPP-nacnac)(NH(2)BH(3))?(NH(3))(2), Ca(DIPP-nacnac)(NH(2)BH(3))?(NH(3))(3), Ca(DIPP-nacnac)[NH(Me)BH(3)]?(NH(3))(2), Ca(DIPP-nacnac)[NH(iPr)BH(3)]?(NH(3))(2), and Ca(DIPP-nacnac)[NH(DIPP)BH(3)]?NH(3). The crystal structure of Ca(DIPP-nacnac)(NH(2)BH(3))?(NH(3)(3) showed a NH(2)BH(3)(-) unit that was fully embedded in a network of BH???HN interactions (range: 1.97(4)-2.39(4)??) that were mainly found between NH(3) ligands and BH(3) groups. In addition, there were N-H???C interactions between NH(3) ligands and the central carbon atom in the ligand. Solutions of these calcium-amidoborane-ammine complexes in benzene were heated stepwise to 60?°C and thermally decomposed. The following main conclusions can be drawn: 1)?Competing protonation of the DIPP-nacnac anion by NH(3) was observed; 2)?The NH(3) ligands were bound loosely to the Ca(2+) ions and were partially eliminated upon heating. Crystal structures of [Ca(DIPP-nacnac)(NH(2)BH(3))?(NH(3))](∞), Ca(DIPP-nacnac)(NH(2)BH(3))?(NH(3))?(THF), and [Ca(DIPP-nacnac){NH(iPr)BH(3)}](2) were obtained. 3)?Independent of the nature of the substituent R in NH(R)BH(3), the formation of H(2) was observed at around 50?°C. 4)?In all cases, the complex [Ca(DIPP-nacnac)(NH(2))](2) was formed as a major product of thermal decomposition, and its dimeric nature was confirmed by single-crystal analysis. We proposed that thermal decomposition of calcium-amidoborane-ammine complexes goes through an intermediate calcium-hydride-ammine complex which eliminates hydrogen and [Ca(DIPP-nacnac)(NH(2))](2). It is likely that the formation of metal amides is also an important reaction pathway for the decomposition of metal-amidoborane-ammine complexes in the solid state.  相似文献   

3.
甲胺分子多光子电离质谱研究   总被引:11,自引:3,他引:11  
胜多光子电离飞行时间质谱法,利用可调谐脉冲激光器,测得了甲胺分子在不同激光波长和激光功率下的多光子电离和解离产物。母体离子CH3NH^+2的离解速常数随激光发波长的增大而减小。  相似文献   

4.
Experimental matrix IR spectra in alliance with extensive quantum chemical calculations provide a framework for the detailed evaluation of the structures and electronic properties of the doublet species Al x NH(3), Al(NH(3))(2), HAlNH(2), HAlNH(2) x NH(3), and Al(NH(2))(2). These species were the products of the reaction of Al atoms with NH(3) in an Ar matrix. While the two species Al x NH(3) and HAlNH(2) were already sighted in previous experiments, the results described herein lead to the first identification and characterization of HAlNH(2) x NH(3) and Al(NH(2))(2), the products of the reaction of Al atoms with two NH(3) molecules. The results allow a detailed reaction scheme leading to all the product species to be established. The unpaired electron in each of the species Al x NH(3), Al(NH(3))(2), HAlNH(2), HAlNH(2) x NH(3), and Al(NH(2))(2) is located near the Al atom, but there is a significant degree of delocalization, especially in Al(NH(2))(2), due to pi bonding interactions. The consequences for the barrier to pyramidalization at the N-atom are discussed.  相似文献   

5.
Li W  Wu G  Chua Y  Feng YP  Chen P 《Inorganic chemistry》2012,51(1):76-87
First-principles calculations show that [NH(3)] molecules play crucial roles as both activator for the break-up of B-H bond and supplier of protic H for the establishment of dihydrogen bonding, which could facilitate the dehydrogenation of Ca(NH(2)BH(3))(2)·2NH(3) or Mg(NH(2)BH(3))(2)·NH(3) occurring at lower temperatures compared to those of Ca(NH(2)BH(3))(2) and Mg(NH(2)BH(3))(2). Moreover, the calculations of Helmholtz Free energy and [NH(3)] molecule removal energy evidence that coordination between [NH(3)] and Mg cation is stronger than that between [NH(3)] and Ca cation; therefore, Mg(NH(2)BH(3))(2)·NH(3) will undergo directly dehydrogenation rather than deammoniation at lower temperatures.  相似文献   

6.
The compound [NH4(NH3)4][B(C6H5)4].NH3 (1) was prepared by the reaction of NaB(C(6)H(5))(4) with a proton-charged ion-exchange resin in liquid ammonia. [NH(4)(NH(3))(4)][Ca(NH(3))(7)]As(3)S(6).2NH(3) (2) and [NH4(NH3)4][Ba(NH3)8]As3S6.NH3 (3) were synthesized by reduction of As(4)S(4) with Ca and Ba in liquid ammonia. All ammoniates were characterized by low-temperature single-crystal X-ray structure analysis. They were found to contain the ammine-ammonium complex with the maximal possible number of coordinating ammonia molecules, the [NH4(NH3)4]+ ion. 1 contains a special dimer, the [(NH4(NH3)4)2(mu-NH3)2]2+ ion, which is formed by two[NH4(NH3)4]+ ions linked by two ammonia molecules. The H(3)N-H...N hydrogen bonds in all three compounds range from 1.82 to 2.20 A (DHA = Donor-H...Acceptor angles: 156-178 degrees). In 2 and 3, additional H(2)N-H...S bonds to the thioanions are observed, ranging between 2.49 and 3.00 A (DHA angles: 120-175 degrees). Two parallel phenyl rings of the [B(C(6)H(5))(4)](-) anion in 1 form a pi...pi hydrogen bond (C...C distance, 3.38 A; DHA angles, 82 degrees), leading to a dimeric [B(C6H5)4]2(2-) ion.  相似文献   

7.
The reactivity of hydrazine in the presence of diborane has been investigated using ab initio quantum chemical computations (MP2 and CCSD(T) methods with the aug-cc-pVTZ basis set). Portions of the relevant potential energy surface were constructed to probe the formation mechanism of the hydrazine diborane (BH(3)BH(3)NH(2)NH(2)) and hydrazine bisborane (BH(3)NH(2)NH(2)BH(3)). The differences between both adducts are established. The release of hydrogen molecules from hydrazine bisborane adducts has also been characterized. Our results suggest that the BH(3)NH(2)NH(2)BH(3) adduct, which has been prepared experimentally, is formed from the starting reactants hydrazine + diborane. The observed adduct is produced by a transfer of a BH(3) group from BH(3)BH(3)NH(2)NH(2) rather than by the direct attachment of a separate BH(3) group, generated by predissociation of diborane, to BH(3)NH(2)NH(2).  相似文献   

8.
When a very small concentration of H2 is added to a Ne:NH3=800:1 sample and the resulting mixture is deposited at 4.3 K, a new absorption appears at 4151.1 cm(-1) which can be assigned to the H2 stretching fundamental of H2 (j=1) complexed with NH3. Other new absorptions which appear near the vibrational fundamentals of NH3 are assigned to the NH3 moiety in this complex and in the complex of NH3 with H2 (j=0). The results of experiments in which HD or D2 is added to the Ne:NH3 mixture support these assignments. Ab initio and density functional calculations predict the observed infrared activation of the H2-stretching vibration for a structure in which the axis of the H2 molecule is collinear with the threefold axis of the NH3. The dependence of the observed absorption patterns on the concentration of H2 in the sample indicates that complexes of NH3 with two or more H2 molecules also form readily.  相似文献   

9.
Positive and negatively charged ammonia clusters produced by the impact of (252)Cf fission fragments (FF) on an NH(3) ice target have been examined theoretical and experimentally. The ammonia clusters generated by (252)Cf FF show an exponential dependence of the cluster population on its mass, and the desorption yields for the positive (NH(3))(n)NH(4)(+) clusters are 1 order of magnitude higher than those for the negative (NH(3))(n)NH(2)(-) clusters. The experimental population analysis of (NH(3))(n)NH(4)(+) (n = 0-18) and (NH(3))(n)NH(2)(-) (n = 0-8) cluster series show a special stability at n = 4 and 16 and n = 2, 4, and 6, respectively. DFT/B3LYP calculations of the (NH(3))(0)(-)(8)NH(4)(+) clusters show that the structures of the more stable conformers follow a clear pattern: each additional NH(3) group makes a new hydrogen bond with one of the hydrogen atoms of an NH(3) unit already bound to the NH(4)(+) core. For the (NH(3))(0)(-)(8)NH(2)(-) clusters, the DFT/B3LYP calculations show that, within the calculation error, the more stable conformers follow a clear pattern for n = 1-6: each additional NH(3) group makes a new hydrogen bond to the NH(2)(-) core. For n = 7 and 8, the additional NH(3) groups bind to other NH(3) groups, probably because of the saturation of the NH(2)(-) core. Similar results were obtained at the MP2 level of calculation. A stability analysis was performed using the commonly defined stability function E(n)(-)(1) + E(n)(+1) - 2E(n), where E is the total energy of the cluster, including the zero point correction energy (E = E(t) + ZPE). The trend on the relative stability of the clusters presents an excellent agreement with the distribution of experimental cluster abundances. Moreover, the stability analysis predicts that the (NH(3))(4)NH(4)(+) and the even negative clusters [(NH(3))(n)NH(2)(-), n = 2, 4, and 6] should be the most stable ones, in perfect agreement with the experimental results.  相似文献   

10.
Journal of Structural Chemistry - New complex salts [Pd(NH3)4][Pd(NH3)3NO2][CrOx3]·H2O I, [Pd(NH3)4][Pd(NH3)3NO2][CoOx3]·H2O II, and a series of solid solutions...  相似文献   

11.
Mechanism of hydrogenation reaction in the Li-Mg-N-H system   总被引:1,自引:0,他引:1  
The Li-Mg-N-H system composed of 3 Mg(NH2)2 and 8 LiH reversibly desorbs/absorbs approximately 7 wt % of H2 at 120-200 degrees C and transforms into 4 Li2NH and Mg3N2 after dehydrogenation. In this work, the mechanism of the hydrogenation reaction from 4 Li2NH and Mg3N2 to 8 LiH and 3 Mg(NH2)2 was investigated in detail. Experimental results indicate that 4 Li2NH is first hydrogenated into 4 LiH and 4 LiNH2. At the next step, 4 LiNH2 decomposes into 2 Li2NH and 2 NH3, and the emitted 2 NH3 reacts with (1/2) Mg3N2 and produces the (3/2) Mg(NH2)2 phase, while the produced 2 Li2NH is hydrogenated into 2 LiH and 2 LiNH2 again. Such successive steps continue until all 4 Li2NH and Mg3N2 completely transform into 8 LiH and 3 Mg(NH2)2 by hydrogenation.  相似文献   

12.
The reactivity of yttrium atoms toward ammonia is revisited using expanded density functional theory calculations. The new results reveal that absorption of NH3 on YNH is dissociative to form Y(NH2)2.The di-amide species can adsorb further NH3 molecules molecularly to form Y(NH2)2NH3 and Y(NH2)2(NH3)2. The calculations aimed to reveal the detail of the potential energy curves between the imide and the di-amide forms. The Y(NH2)2(NH3)x species are more stable than those of YNH(NH3)x by more than 20 kcal/mol.  相似文献   

13.
Crystallization experiments are conducted for aerosol particles composed of aqueous mixtures of (NH(4))(2)SO(4)(aq) and NH(4)NO(3)(aq), (NH(4))(2)SO(4)(aq) and NH(4)HSO(4)(aq), and NH(4)NO(3)(aq) and NH(4)HSO(4)(aq). Depending on the aqueous composition, crystals of (NH(4))(2)SO(4)(s), (NH(4))(3)H(SO(4))(2)(s), NH(4)HSO(4)(s), NH(4)NO(3)(s), 2NH(4)NO(3) x (NH(4))(2)SO(4)(s), and 3NH(4)NO(3) x (NH(4))(2)SO(4)(s) are formed. Although particles of NH(4)NO(3)(aq) and NH(4)HSO(4)(aq) do not crystallize even at 1% relative humidity, additions of 0.05 mol fraction SO(4)(2-)(aq) or NO(3)(-)(aq) ions promote crystallization, respectively. 2NH(4)NO(3) x (NH(4))(2)SO(4)(s) and (NH(4))(3)H(SO(4))(2)(s) appear to serve as good heterogeneous nuclei for NH(4)NO(3)(s) and NH(4)HSO(4)(s), respectively. 2NH(4)NO(3) x (NH(4))(2)SO(4)(s) crystallizes over a greater range of aqueous compositions than 3NH(4)NO(3) x (NH(4))(2)SO(4)(s). An infrared aerosol spectrum is provided for each solid based upon a linear decomposition analysis of the recorded spectra. Small nonzero residuals occur in the analysis because aerosol spectra depend on particle morphology, which changes slightly across the range of compositions studied. In addition, several of the mixed compositions crystallize with residual aqueous water of up to 5% particle mass. We attribute this water content to enclosed water pockets. The results provide further insights into the nonlinear crystallization pathways of sulfate-nitrate-ammonium aerosol particles.  相似文献   

14.
In this paper we explore several issues surrounding the catalytic reduction of dinitrogen by molybdenum compounds that contain the [(HIPTNCH2CH2)3N]3- ligand (where HIPT = 3,5-(2,4,6-i-Pr3C6H2)2C6H3). Four additional plausible intermediates in the catalytic dinitrogen reduction have now been crystallographically characterized; they are MoN= NH (Mo = [(HIPTNCH2CH2)3N]Mo), [Mo=NNH2][BAr'4] (Ar' = 3,5-(CF3)2C6H3), [Mo=NH][BAr'4], and Mo(NH3). We also have crystallographically characterized a 2,6-lutidine complex, Mo(2,6-Lut)+, which is formed upon treatment of MoH with [2,6-LutH][B(C6F5)4]. We focus on the synthesis of compounds that have not yet been isolated, which include Mo=NNH2, Mo=NH, and Mo(NH2). Mo=NNH2, formed by reduction of [Mo=NNH2]+, has not been observed. It decomposes to give mixtures that contain two or more of the following: MoN=NH, Mo triple bond N, Mo(NH3)+, Mo(NH3), and ammonia. Mo=NH, which can be prepared by reduction of [Mo=NH]+, is stable for long periods in the presence of a small amount of CrCp*2, but in the absence of CrCp*2, and in the presence of Mo=NH+ as a catalyst, Mo=NH is slowly converted into a mixture of Mo triple bond N and Mo(NH2). Mo(NH2) can be produced independently by deprotonation of Mo(NH3)+ with LiN(SiMe3)2 in THF, but it decomposes to Mo triple bond N upon attempted isolation. Although catalytic reduction of dinitrogen could involve up to 14 intermediates in a "linear" sequence that involves addition of "external" protons and/or electrons, it seems likely now that several of these intermediates, along with ammonia and/or dihydrogen, can be produced in several reactions between intermediates that themselves behave as proton and/or electron sources.  相似文献   

15.
16.
A new borohydride, [CH(3)NH(3)](+)[BH(4)](-), has been synthesized through the metathesis of CH(3)NH(3)F and NaBH(4) in methylamine. Room-temperature X-ray diffraction studies have shown that [CH(3)NH(3)](+)[BH(4)](-) adopts a tetragonal unit cell with considerable hydrogen mobility similar to that observed in NH(3)BH(3). The kinetics and thermodynamics of hydrogen release have been investigated and were found to follow a similar pathway to that of [NH(4)](+)[BH(4)](-). Decomposition of [CH(3)NH(3)](+)[BH(4)](-) occurred slowly at room temperature and rapidly at ca. 40 °C to form [BH(2)(CH(3)NH(2))(2)](+)[BH(4)](-), the methylated analogue of the diammoniate of diborane. The decomposition has been investigated by means of in situ X-ray diffraction and solid state (11)B NMR spectroscopy and occurred in the absence of any detectable intermediates to form crystalline [BH(2)(CH(3)NH(2))(2)](+)[BH(4)](-). [(CH(3))(2)NH(2)](+)[BH(4)](-) and [BH(2){(CH(3))(2)NH}(2)](+)[BH(4)](-) have also been synthesized through analogous routes, indicating a more general applicability of the synthetic method.  相似文献   

17.
The asymmetric platinum complexes cis-Pt(LL')Cl2 (L = NH3, L' = CH3NH2, (CH3)2NH, C2H5NH2 and (C2H5)2NH and LL' = N,N-dimethylethylenediamine),--one of the NH3 groups of cis-Pt(NH3)2Cl2 was substituted by alkylamine--, were synthesized and their cytotoxic effects have been measured using L-1210 cells. The IC50 values of the asymmetric platinum complexes,--being obtained after 24 h exposure of L-1210 cells to the platinum complexes--, are almost comparable to the corresponding value of cis-Pt(NH3)2Cl2. In 2 h exposure, however, the IC50 values of the platinum complexes were dramatically changed, i.e., a marked difference was observed between those of L' = RNH2 and L' = R2NH. On the other hand, the amounts of platinum taken into the L-1210 cells is little affected by the alkylamino substitution. The results suggest that the bifunctional platinum binding to the target molecule may be responsible for the cytotoxicity.  相似文献   

18.
Hydrogen-bonded supramolecular cation assemblies of (NH4+/NH2-NH3+)(crown ether), where the crown ether is [12]crown-4, [15]crown-5, or [18]crown-6, were incorporated into electrically conducting [Ni(dmit)2] salts (dmit2- = 2-thioxo-1,3-dithiole-4,5-dithiolate). (NH4+)([12]crown-4)[Ni(dmit)2]3(CH3CN)2 had a pyramidal shape, while ionic channels were observed in (NH4+)(0.88)([15]crown-5)[Ni(dmit)(2)]2 and (NH4+)(0.70)([18]crown-6)[Ni(dmit)(2)]2. Both (NH4+)(0.88)([15]crown-5) and (NH4+)(0.70)([18]crown-6) contained regularly spaced [Ni(dmit)(2)] stacks formed by N-H.O hydrogen bonding between the oxygen atoms in crown ethers and the NH4+ ion. NH4+ occurred nonstoichiometrically; there were vacant ionic sites in the ionic channels. The ionic radius of NH4+ is larger than the cavity radius of [15]crown-5 and [18]crown-6. Therefore, NH4+ ions could not pass through the cavity and were distributed randomly in the ionic channels. The static disorder caused the conduction electrons to be randomly localized to the [Ni(dmit)2] stacks. Hydrazinium (NH2-NH3+) formed the supramolecular cations in (NH2-NH3+)([12]crown-4)2[Ni(dmit)2]4 and (NH2-NH3+)2([15]crown-5)3[Ni(dmit)2]6, possessing a sandwich and club-sandwich structure, respectively. To the best of our knowledge, these represent the first hydrazinium-crown ether assemblies to be identified in the solid. In the supramolecular cations, hydrogen bonding was detected between the ammonium or the amino protons of NH2-NH3+ and the oxygen atoms of crown ethers. The sandwich-type cations coexisted with the [Ni(dmit)2] dimer stacks. Although the assemblies were typically semiconducting, ferromagnetic interaction (Weiss temperature = +1 K) was detected in the case of (NH2-NH3+)2([15]crown-5)3[Ni(dmit)2]6. The (NH2-NH3+)0.8([18]crown-6)[Ni(dmit)2]2 and (NH4+)0.76([18]crown-6)[Ni(dmit)2]2 crystals were isomorphous. The large and flexible [18]crown-6 allowed for maintaining the same ionic channel structure through replacement of the NH4+ cation by NH2-NH3+.  相似文献   

19.
High-level electronic structure calculations have been used to construct portions of the potential energy surfaces related to the reaction of diborane with ammonia and ammonia borane (B2H6 + NH3 and B2H6 + BH3NH3)to probe the molecular mechanism of H2 release. Geometries of stationary points were optimized at the MP2/aug-cc-pVTZ level. Total energies were computed at the coupled-cluster CCSD(T) theory level with the correlation-consistent basis sets. The results show a wide range of reaction pathways for H2 elimination. The initial interaction of B2H6 + NH3 leads to a weak preassociation complex, from which a B-H-B bridge bond is broken giving rise to a more stable H3BHBH2NH3 adduct. This intermediate, which is also formed from BH3NH3 + BH3, is connected with at least six transition states for H2 release with energies 18-93 kal/mol above the separated reactants. The lowest-lying transition state is a six-member cycle, in which BH3exerts a bifunctional catalytic effect accelerating H2 generation within a B-H-H-N framework. Diborane also induces a catalytic effect for H2 elimination from BH3NH3 via a three-step pathway with cyclic transition states. Following conformational changes, the rate-determining transition state for H2 release is approximately 27 kcal/mol above the B2H6 + BH3NH3 reactants, as compared with an energy barrier of approximately 37 kcal/mol for H2 release from BH3NH3. The behavior of two separated BH3 molecules is more complex and involves multiple reaction pathways. Channels from diborane or borane initially converge to a complex comprising the H3BHBH2NH3adduct plus BH3. The interaction of free BH3 with the BH3 moiety of BH3NH3 via a six-member transition state with diborane type of bonding leads to a lower-energy transition state. The corresponding energy barrier is approximately 8 kcal/mol, relative to the reference point H3BHBH2NH3 adduct + BH3. These transition states are 27-36 kcal/mol above BH3NH3 + B2H6, but 1-9 kcal/mol below the separated reactants BH3NH3 + 2 BH3. Upon chemical activation of B2H6 by forming 2 BH3, there should be sufficient internal energy to undergo spontaneous H2 release. Proceeding in the opposite direction, the H2 regeneration of the products of the B2H6 + BH3NH3reaction should be a feasible process under mild thermal conditions.  相似文献   

20.
Two-dimensional and multi-layered perovskites, [NH3(CH2)12NH3]PbBr4 and [NH3(CH2)12NH3](CH3NH3)(n-1)Pb(n)Br(3n+1), with a quantum confinement effect have been naturally formed by intercalating lead bromide into organic alkyldiammonium bromide frameworks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号