首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
This paper reports the first characterization of the (NH(3))(n)NH+ cluster series produced by a 252Cf fission fragments (FF) impact onto a NH(3) ice target. The (NH(3))(n=1-6)NH+ members of this series have been analyzed theoretically and experimentally. Their ion desorption yields show an exponential dependence of the cluster population on its mass, presenting a relative higher abundance at n = 5. The results of DFT/B3LYP calculations show that two main series of ammonium clusters may be formed. Both series follow a clear pattern: each additional NH(3) group makes a new hydrogen bond with one of the hydrogen atoms of the respective {NH(3)NH}+ and {NH(2)NH(2)}+ cores. The energy analysis (i.e., D-plot and stability analysis) shows that the calculated members of the (NH(3))(n-1){NH(2)NH(2)}+ series are more stable than those of the (NH(3))(n-1){NH(3)NH}+ series. The trend on the relative stability of the members of more stable series, (NH(3))(n-1){NH(2)NH(2)}+, shows excellent agreement with the experimental distribution of cluster abundances. In particular, the (NH(3))4{NH(2)NH(2)}+ structure is the most stable one, in agreement with the experiments.  相似文献   

2.
New particle formation in the atmosphere is initiated by nucleation of gas-phase species. The small molecular clusters that act as seeds for new particles are stabilized by the incorporation of an ion. Ion-induced nucleation of molecular cluster ions containing sulfuric acid generates new particles in the background troposphere. The addition of a proton-accepting species to sulfuric acid cluster ions can further stabilize them and may promote nucleation under a wider range of conditions. To understand and accurately predict atmospheric nucleation, the stabilities of each molecular cluster within a chemical family must be known. We present the first comprehensive measurements of the ammonia-sulfuric acid positive ion cluster system NH(4)(+)(NH(3))(n)(H(2)SO(4))(s). Enthalpies and entropies of individual growth steps within this system were measured using either an ion flow reactor-mass spectrometer system under equilibrium conditions or by thermal decomposition of clusters in an ion trap mass spectrometer. Low level ab initio structural calculations provided inputs to a master equation model to determine bond energies from thermal decomposition measurements. Optimized ab initio structures for clusters up through n = 3, s = 3 are reported. Upon addition of ammonia and sulfuric acid pairs, internal proton transfer generates multiple NH(4)(+) and HSO(4)(-) ions within the clusters. These multiple-ion structures are up to 50 kcal mol(-1) more stable than corresponding isomers that retain neutral NH(3) and H(2)SO(4) species. The lowest energy n = s clusters are composed entirely of ions. The addition of acid-base pairs to the core NH(4)(+) ion generates nanocrystals that begin to resemble the ammonium bisulfate bulk crystal starting with the smallest n = s cluster, NH(4)(+)(NH(3))(1)(H(2)SO(4))(1). In the absence of water, this cluster ion system nucleates spontaneously for conditions that encompass most of the free troposphere.  相似文献   

3.
Two-color (1 + 1') REMPI mass spectra of o-, m- and p-fluorophenol.ammonia (1 ration) clusters were measured with a long delay time between excitation and ionization lasers. The appearance of NH(4)(NH(3))(n-1)(+) with 100 ns delay after exciting the S(1) state is a strong indication of generation of long-lived species via S(1). In analogy with the phenol.ammonia clusters, we conclude that an excited state hydrogen transfer reaction occurs in o-, m- and p-fluorophenol.ammonia clusters. The S(1)-S(0) transition of o-, m- and p-fluorophenol.ammonia (1 : 1) clusters were measured by the (1 + 1') REMPI spectra, while larger (1 ration) cluster (n = 2-4) were observed by monitoring the long-lived NH(4)(NH(3))(n-1) clusters action spectra. The vibronic structures of m- and p-fluorophenol.ammonia clusters are assigned based on vibrational calculations in S(0). The o-fluorophenol.ammonia (1 : 1) cluster shows an anharmonic progression that is analyzed by a one-dimensional internal rotational motion of the ammonia molecule. The interaction between the ammonia molecule and the fluorine atom, and its change upon electronic excitation are suggested. The broad action spectra observed for the o-fluorophenol.ammonia (1 : n) cluster (n>== 2) suggest the excited state hydrogen transfer is faster than in m- and p-fluorophenol.ammonia clusters. The different reaction rates between o-, m- and p-fluorophenol.ammonia clusters are found from comparison between the REMPI and action spectra.  相似文献   

4.
Simulated annealing Monte Carlo conformer searches using the "mag-walking" algorithm are employed to locate the global minima of molecular clusters of ammonium chloride of the types (NH(4)Cl)(n), (NH(4)(+))(NH(4)Cl)(n), and (Cl(-))(NH(4)Cl)(n) with n = 1-13. The M06-2X density functional theory method is used to refine and predict the structures, energies, and thermodynamic properties of the neutral, cation, and anion clusters. For selected small clusters, the resulting structures are compared to those obtained from a variety of models and basis sets, including RI-MP2 and B3LYP calculations. M06-2X calculations predict enhanced stability of the (NH(4)(+))(NH(4)Cl)(n) clusters when n = 3, 6, 8, and 13. This prediction corresponds favorably to anomalies previously observed in thermospray mass spectroscopy experiments. The (NH(4)Cl)(n) clusters show alternations in stability between even and odd values of n. Clusters of the type (Cl(-))(NH(4)Cl)(n) display a magic number distribution different from that of the cation clusters, with enhanced stability predicted for n = 2, 6, and 11. None of the observed cluster structures resemble the room-temperature CsCl structure of NH(4)Cl(s), which is consistent with previous work. Numerous clusters have structures reminiscent of the higher-temperature, rock-salt phase of the solid ammonium halides.  相似文献   

5.
Ionization potentials (IPs) of [(CH(3))(2)NH](m)(NH(3))(n)-H hypervalent radical clusters produced by an ArF excimer laser photolysis of dimethylamine (DMA)-ammonia mixed clusters are determined by the photoionization threshold measurements. The IPs of the DMA(1)(NH(3))(n)-H hypervalent radicals decrease rapidly with the number of ammonia up to n=4, and then its decrease rate becomes much slower for n ≥ 5. This trend is very similar to that found for NH(4)(NH(3))(n) clusters. The calculated results on the stable structures and IP as well as the observed IP for DMA(1)(NH(3))(n)-H indicate that the hydrogen atom-localized site is the NH(3) moiety for n=1, while the doubly coordinated DMA-H is favorable for n=2-4, and then 4-fold-coordinated NH(4) is again more stable for n ≥ 5. These changes are consistent with the results on the femtosecond pump-probe experiments of DMA(n)-H clusters. Switching of the hydrogen atom-localized site is ascribed to the instability of DMA-H against a hydrogen-atom dissociation.  相似文献   

6.
Helium nanodroplets are co-doped with C(60) and ammonia. Mass spectra obtained by electron ionization reveal cations containing ammonia clusters complexed with up to four C(60) units. The high mass resolution of Δm/m≈ 1/6000 makes it possible to separate the contributions of protonated, unprotonated and dehydrogenated ammonia. C(60) aggregates suppress the proton-transfer reaction which usually favors the appearance of protonated ammonia cluster ions. Unprotonated C(x)(NH(3))(n)(+) ions (x = 60, 120, 180) exceed the abundance of the corresponding protonated ions if n < 5; for larger values of n the abundances of C(60)(NH(3))(n)(+) and C(60)(NH)(n-1)NH(4)(+) become about equal. Dehydrogenated C(60)NH(2)(+) ions are relatively abundant; their formation is attributed to a transient doubly charged C(60)-ammonia complex which forms either by an Auger process or by Penning ionization following charge transfer between the primary He(+) ion and C(60). The abundance of C(x)NH(3)(+) and C(x)NH(4)(+) ions (x = 120 or 180) is one to two orders of magnitude weaker than the abundance of ions containing one or two additional ammonia molecules. However, a model involving evaporation of NH(3) or NH(4) from the presumably weakly bound C(x)NH(3)(+) and C(x)NH(4)(+) ions is at odds with the lack of enhancement in the abundance of C(120)(+) and C(180)(+). Mass spectra of C(60) dimers complexed with water complement a previous study of C(60)(H(2)O)(n)(+) recorded at much lower mass resolution.  相似文献   

7.
Molecular cluster ions H(+)(H(2)O)(n), H(+)(pyridine)(H(2)O)(n), H(+)(pyridine)(2)(H(2)O)(n), and H(+)(NH(3))(pyridine)(H(2)O)(n) (n = 16-27) and their reactions with ammonia have been studied experimentally using a quadrupole-time-of-flight mass spectrometer. Abundance spectra, evaporation spectra, and reaction branching ratios display magic numbers for H(+)(NH(3))(pyridine)(H(2)O)(n) and H(+)(NH(3))(pyridine)(2)(H(2)O)(n) at n = 18, 20, and 27. The reactions between H(+)(pyridine)(m)(H(2)O)(n) and ammonia all seem to involve intracluster proton transfer to ammonia, thus giving clusters of high stability as evident from the loss of several water molecules from the reacting cluster. The pattern of the observed magic numbers suggest that H(+)(NH(3))(pyridine)(H(2)O)(n) have structures consisting of a NH(4)(+)(H(2)O)(n) core with the pyridine molecule hydrogen-bonded to the surface of the core. This is consistent with the results of high-level ab initio calculations of small protonated pyridine/ammonia/water clusters.  相似文献   

8.
Yttrium- and lanthanum-carbide cluster cations YC(n)(+) and LaC(n)(+) (n = 2, 4, and 6) are generated by laser ablation of carbonaceous material containing Y(2)O(3) or La(2)O(3). YC(2)(+), YC(4)(+), LaC(2)(+), LaC(4)(+), and LaC(6)(+) are selected to undergo gas-phase ion-molecule reactions with benzene and cyclohexane. The FTICR mass spectrometry study shows that the reactions of YC(2)(+) and LaC(2)(+) with benzene produce three main series of cluster ions. They are in the form of M(C(6)H(4))(C(6)H(6))(n)(+), M(C(8)H(4))(C(6)H(6))(n)(+), and M(C(8)H(6))(C(6)H(6))(m)(+) (M = Y and La; n = 0-3; m = 0-2). For YC(4)(+), LaC(4)(+), and LaC(6)(+), benzene addition products in the form of MC(n)(C(6)H(6))(m)(+) (M = Y and La; n = 4, 6; m = 1, 2) are observed. In the reaction with cyclohexane, all the metal-carbide cluster ions are observed to form metal-benzene complexes M(C(6)H(6))(n)(+) (M = Y and La; n= 1-3). Collision-induced-dissociation experiments were performed on the major reaction product ions, and the different levels of energy required for the fragmentation suggest that both covalent bonding and weak electrostatic interaction exist in these organometallic complexes. Several major product ions were calculated using DFT theory, and their ground-state geometries and energies were obtained.  相似文献   

9.
Site-differentiated solvated clusters of the general formula [Re(6)(mu(3)-Se)(8)(PEt(3))(n)(MeCN)(6)(-)(n)](SbF(6))(2) (n = 4, cis and trans; n = 5) undergo ligand substitution reaction with isonicotinamide to afford the corresponding amide derivatives, [Re(6)(mu(3)-Se)(8)(PEt(3))(n)(isonicotinamide)(6)(-)(n)](2+) [1 (n = 5); 2 (n = 4, trans); 3 (n = 4, cis)]. Retention of stereochemistry in each case was confirmed by (1)H and (31)P NMR. The solid-state structures of all three compounds were established crystallographically, which revealed self-complementary hydrogen-bonding interactions between adjacent cluster units. While complex 1 exists as hydrogen-bonded dimers in the solid state, compounds 2 and 3 form one-dimensional chains of clusters bridged by paired hydrogen bonds. It is the rigid stereochemistry of the cluster, combined with the classic crystal engineering motif of complementary N-H.O amide hydrogen bonding, that affords the predictable solid-state structures and dimensionality.  相似文献   

10.
The structures of positively and negatively charged clusters of sulfuric acid with ammonia and/or dimethylamine ((CH(3))(2)NH or DMA) are investigated using a combination of Monte Carlo configuration sampling, semiempirical calculations, and density functional theory (DFT) calculations. Positively charged clusters of the formula [(NH(4)(+))(x)(HSO(4)(-))(y)](+), where x = y + 1, are studied for 1 ≤ y ≤ 10. These clusters exhibit strong cation-anion interactions, with no contribution to the hydrogen-bonding network from the bisulfate ion protons. A similar hydrogen-bonding network is found for the [(DMAH(+))(5)(HSO(4)(-))(4)](-) cluster. Negatively charged clusters derived from the reaction of DMA with [(H(2)SO(4))(3)(NH(4)(+))(HSO(4)(-))(2)](-) are also studied, up to the fully reacted cluster [(DMAH(+))(4)(HSO(4)(-))(5)](-). These clusters exhibit anion-anion and ion-molecule interactions in addition to cation-anion interactions. While the hydrogen-bonding network is extensive for both positively and negatively charged clusters, the binding energies of ions and molecules in these clusters are determined mostly by electrostatic interactions. The thermodynamics of amine substitution is explored and compared to experimental thermodynamic and kinetic data. Ammonia binds more strongly than DMA to sulfuric acid due to its greater participation in hydrogen bonding and its ability to form a more compact structure that increases electrostatic attraction between oppositely charged ions. However, the greater gas-phase basicity of DMA is sufficient to overcome the stronger binding of ammonia, making substitution of DMA for ammonia thermodynamically favorable. For small clusters of both polarities, substitutions of surface ammonium ions are facile. As the cluster size increases, an ammonium ion becomes encapsulated in the center of the cluster, making it inaccessible to substitution.  相似文献   

11.
The crystal structures of three hybrid organoammonium metal halide salts composed of edge-sharing MX(6) octahedra have been determined. The genesis of these structures can be traced to the parent hexagonal MX(2) structure via dimensional reduction and recombination arguments. The structures of (Et(2)NH(2))(3)Pb(3)X(9) x nH(2)O (X = Br, I) contain unique columnar (Pb(3)X(9))(n)(3)(n)(-) structures, built up of edge-shared PbX(6) octahedra. The interaction of the Et(2)NH(2)(+) cations with the parent PbX(2) structures leads to a rearrangement of the lattice into the observed columnar structure. Groups of six Et(2)NH(2)(+) cations are hydrogen bonded to these columns, girdling them at their narrowest points. These hydrogen bonds contribute to the formation of the zigzag nature of the columnar inorganic framework. The resultant structures are recombinate analogues (polytypes) of the (Pb(3)X(9))(n)(3)(n)(-) stacks that would be obtained by the dimensional reduction process of the parent layer PbX(2) structure into simple edge-shared ribbons of PbX(6) octahedra. These structures can be described in terms of the stacking of planar bibridged Pb(3)X(8)(2-) units decorated with a single halide ion at a terminal lead ion site. In a similar fashion, (beta-alaH)(2)Sn(2)I(6) contains corrugated (Sn(2)I(6))(n)(2)(n)(-) columns (beta-ala = beta-alanine), with the cations sitting in the clefts of the columns.  相似文献   

12.
The interaction between ammonia and the benzene radical cation has been investigated by gas-phase studies of mass selected ion clusters {C(6)H(6)-(NH(3))(n=0-8)}(+) via tandem quadrupole mass spectrometry and through calculations. Experiments show a special stability for the cluster ion that contains four ammonias: {C(6)H(6)(NH(3))(4)}(+). Calculations provide evidence that the first ammonia forms a weak dative bond to the cyclohexadienyl radical cation, {C(6)H(6)-NH(3)}(+), where there is a transfer of electrons from ammonia to benzene. Additional solvating ammonia molecules form stabilizing hydrogen bonds to the ring-bound ammonia {C(6)H(6)-NH(3)}(+).(NH(3))(n), which cause cooperative changes in the structure of the cluster complex. Free ammonia is a weak hydrogen bond donor, but electron transfer from NH(3) to the benzene ring that strengthens the dative bond will increase the hydrogen acidity and the strength of the cluster hydrogen bonds to the added ammonia. A progressive "tightening" of this dative bond is observed upon addition of the first, second, and third ammonia to give a cluster stabilized by three N-(+)H x N hydrogen bonds. This shows that the energetic cost of tightening the dative bond is recovered with dividends in the formation of stable cluster hydrogen bonds.  相似文献   

13.
Four new Th(IV), U(IV), and Np(IV) hexanuclear clusters with 1,2-phenylenediphosphonate as the bridging ligand have been prepared by self-assembly at room temperature. The structures of Th(6)Tl(3)[C(6)H(4)(PO(3))(PO(3)H)](6)(NO(3))(7)(H(2)O)(6)·(NO(3))(2)·4H(2)O (Th6-3), (NH(4))(8.11)Np(12)Rb(3.89)[C(6)H(4)(PO(3))(PO(3)H)](12)(NO(3))(24)·15H(2)O (Np6-1), (NH(4))(4)U(12)Cs(8)[C(6)H(4)(PO(3))(PO(3)H)](12)(NO(3))(24)·18H(2)O (U6-1), and (NH(4))(4)U(12)Cs(2)[C(6)H(4)(PO(3))(PO(3)H)](12)(NO(3))(18)·40H(2)O (U6-2) are described and compared with other clusters of containing An(IV) or Ce(IV). All of the clusters share the common formula M(6)(H(2)O)(m)[C(6)H(3)(PO(3))(PO(3)H)](6)(NO(3))(n)((6-n)) (M = Ce, Th, U, Np, Pu). The metal centers are normally nine-coordinate, with five oxygen atoms from the ligand and an additional four either occupied by NO(3)(-) or H(2)O. It was found that the Ce, U, and Pu clusters favor both C(3i) and C(i) point groups, while Th only yields in C(i), and Np only C(3i). In the C(3i) clusters, there are two NO(3)(-) anions bonded to the metal centers. In the C(i) clusters, the number of NO(3)(-) anions varies from 0 to 2. The change in the ionic radius of the actinide ions tunes the cavity size of the clusters. The thorium clusters were found to accept larger ions including Cs(+) and Tl(+), whereas with uranium and later elements, only NH(4)(+) and/or Rb(+) reside in the center of the clusters.  相似文献   

14.
UV absorption spectral evidence confirms that a mixed-ligand complex, Cu(CN)(2)(NH(3))(-), is formed in an aqueous solution of KCu(CN)(2) and ammonia. The stepwise stability constant for the reaction, Cu(CN)(2)(-) + NH(3) = Cu(CN)(2)(NH(3))(-), is 2.80 +/- 0.40 in 1 M ionic strength, NaClO(4) medium at 25 degrees C. This amminedicyanocuprate(I) ion readily combines in aqueous solution in a 1:2 and 2:1 molar ratios with Cu(NH(3))(2)(+) to form two trinuclear ionic species, presumably with cyano bridges, with the suggested formulas of Cu(3)(CN)(2)(NH(3))(5)(+) and Cu(3)(CN)(4)(NH(3))(3)(-). The resolved UV absorption spectra of the monomer and two trimers have been determined and exhibit strong bands, presumably metal-ligand charge transfer in nature, in the 200-250-nm region. When solutions of all three complexes absorb a pulse of 266-nm laser light, they photoeject hydrated electrons monophotonically, with quantum yields of 0.41 +/- 0.02, 0.53 +/- 0.02, and 0.50 +/- 0.01 for the monomer, cationic trimer, and anionic trimer, respectively, suggesting that absorption in the charge-transfer-to-solvent bands of these complexes results in an efficient electron ejection process that is enhanced by the existence of a polynuclear structure with cyano bridges. No room-temperature luminescence is observed for these complexes.  相似文献   

15.
We have developed an evolutionary algorithm (EA) for the global minimum search of molecular clusters. The EA is able to discover all the putative global minima of water clusters up to (H(2)O)(20) and benzene clusters up to (C(6)H(6))(30). Then, the EA was applied to search for the global minima structures of (C(6)H(6))(n)(+) with n = 2-20, some of which were theoretically studied for the first time. Our results for n = 2-6 are consistent with previous theoretical work that uses a similar interaction potential. Excluding the very symmetric global minimum structure for n = 9, the growth pattern of (C(6)H(6))(n)(+) with n ≥ 7 involves the (C(6)H(6))(2)(+) dimer motif, which is placed off-center in the cluster. Such observation indicates that potentials commonly used in the literature for (C(6)H(6))(n)(+) cannot reproduce the icosahedral-type packing suggested by the available experimental data.  相似文献   

16.
1,2,4-triazole was alkylated (alkyl = methyl, butyl, heptyl, decyl) at N-1 in >90% isolated yields. The resulting 1-alkyl triazoles were quaternized at N-4 in >98% isolated yields using fluorinated alkyl halides with >98% isolated yields, under neat reaction conditions at 100-120 degrees C to form N1-CH(3)-N4-(CH(2))(2)C(m)F(2)(m)(+ 1)-triazolium (Taz) iodide (m = 1, 6), N1-C(4)H(9)-N4-(CH(2))(2)C(m)F(2)(m)(+ 1)-Taz iodide (m = 1, 4, 6), N1-C(7)H(15)-N4-(CH(2))(2)C(m)F(2)(m)(+ 1)-Taz iodide (m = 1, 4, 6), N1-C(10)H(21)-N4-(CH(2))(2)C(m)F(2)(m)(+1)-Taz iodide (m = 1, 4), and N1-C(n)H(2)(n )(+ 1)-N4-(CH(2))(2)F-Taz bromide (n = 4, 7, 10). Single-crystal X-ray analyses confirmed the structure of [1-CH(3)-4-CH(2)CH(2)CF(3)-Taz](+)I(-). It crystallized in the orthorhombic space group Pccn, and the unit cell dimensions were a = 13.8289(9) A, b = 17.3603(11) A, c = 9.0587(6) A (alpha = beta = gamma = 90 degrees ). Metathesis of these polyfluoroalkyl-substituted triazolium halides with other salts led to the formation of quaternary compounds, some of which comprise ionic liquids, namely, [R(R(f))-Taz](+)Y(-) (Y = NTf(2), BF(4), PF(6), and OTf), in good isolated yields without the need for further purification: N1-CH(3)-N4-(CH(2))(2)C(m)F(2)(m)( +) (1)-Taz Y (m = 1, 6; Y = NTf(2)), N1-C(4)H(9)-N4-(CH(2))(2)C(m)F(2)(m)(+ 1)-Taz Y (m = 1, 4, 6; Y = NTf(2)), N1- C(7)H(15)-N4-(CH(2))(2)C(m)F(2)(m)(+ 1)-Taz Y (m = 1, 4, 6; Y = NTf(2)), N1-C(10)H(21)-N4-(CH(2))(2)C(m)F(2)(m)(+1)-Taz Y (n = 1, 4; Y = NTf(2)), N1-C(n)H(2)(n )(+ 1)-N4-(CH(2))(2)F-Taz Y (n = 7, 10; Y = NTf(2)), N1-C(10)H(21)-N4-(CH(2))(2)F-TazY (Y = OTf), N1-C(7)H(15)-N4-(CH(2))(2)F-TazY (Y = BF(4)), N1-C(4)H(9)-N4-(CH(2))(2)C(m)F(2)(m) (+ 1)-Taz Y (m = 4, 6; Y = PF(6)), N1-C(7)H(15)-N4-(CH(2))(2)C(4)F(9)-Taz Y (Y = PF(6)), N1-C(4)H(9)-N4-(CH(2))(2)C(m)F(2)(m)(+ 1)-Taz Y (m = 4, 6; Y = OTf). All new compounds were characterized by (1)H, (19)F, and (13)C NMR and MS spectra and elemental analyses. T(g)s and T(m)s of ionic liquids were determined by DSC.  相似文献   

17.
Alkali metal ammonia clusters, in their cationic, neutral, and anionic form, are molecular models for the alkali-ammonia solutions, which have rich variation of phases with the solvated electrons playing an important role. With two s electrons, the Na(-)(NH(3))(n) and Li(-)(NH(3))(n) clusters are unique in that they capture the important aspect of the coupling between two solvated electrons. By first principles calculations, we demonstrate that the two electrons are detached from the metal by n = 10, which produces a cluster with a solvated electron pair in the vicinity of a solvated alkali cation. The coupling of the two electrons leads to either the singlet or triplet state, both of which are stable. They are also quite distinct from the hydrated anionic clusters Na(-)(H(2)O)(n) and Li(-)(H(2)O)(n), in that the solvated electrons are delocalized and widely distributed among the solvent ammonia molecules. The Na(-)(NH(3))(n) and Li(-)(NH(3))(n) series, therefore, provide another interesting type of molecular model for the investigation of solvated electron pairs.  相似文献   

18.
The photoionization and photodissociation of L-valine are studied by tunable synchrotron vacuum ultraviolet photoionization mass spectrometry at the photon energy of 13 eV. The ionization energy of L-valine and the appearance energies of major fragments are measured by the photoionization efficiency spectrum in the photon energy range of 8-11 eV. Possible formation pathways of the major fragments, NH(2)CHC(OH)(2)(+) (m/z=75), NH(2)(CH(3))(2)(CH)(2)(+) (m/z=72) and NH(2)CHCO(+) (m/z=57), are discussed in detail with the theoretical calculations at the B3LYP/6-31++G (d, p) level. Hydrogen migration is considered as the key way for the formation of NH(2)CHC(OH)(2)(+) (m/z=75) and NH(2)CHCO(+) (m/z=57). Furthermore, other fragments, NH(2)CHCOOH(+) (m/z=74), (CH(3))(2)(CH)(2)(+) (m/z=56), C(4)H(7)(+) (m/z=55), NH(2)CHOH(+) (m/z=46), NH(2)CH(2)(+) (m/z=30) and m/z=18, species are also briefly described.  相似文献   

19.
Iron-sulfur clusters containing a singly or doubly NH.S hydrogen-bonded arenethiolate ligand, [Fe(4)S(4)(S-2-RCONHC(6)H(4))(4)](2)(-) (R = CH(3), t-Bu, CF(3)), [Fe(4)S(4){S-2,6-(RCONH)(2)C(6)H(3)}(4)](2)(-), [Fe(2)S(2)(S-2-RCONHC(6)H(4))(4)](2)(-) (R = CH(3), t-Bu, CF(3)), and [Fe(2)S(2){S-2,6-(RCONH)(2)C(6)H(3)}(4)](2)(-), were synthesized as models of bacterial [4Fe-4S] and plant-type [2Fe-2S] ferredoxins. The X-ray structures and IR spectra of (PPh(4))(2)[Fe(4)S(4){S-2,6-(CH(3)CONH)(2)C(6)H(3)}(4)].2CH(3)CN and (NEt(4))(2)[Fe(2)S(2){S-2,6-(t-BuCONH)(2)C(6)H(3)}(4)] indicate that the two amide NH groups at the o,o'-positions are directed to the thiolate sulfur atom and form double NH.S hydrogen bonds. The NH.S hydrogen bond contributes to the positive shift of the redox potential of not only (Fe(4)S(4))(+)/(Fe(4)S(4))(2+) but also (Fe(4)S(4))(2+)/(Fe(4)S(4))(3+) in the [4Fe-4S] clusters as well as (Fe(2)S(2))(2+)/(Fe(2)S(2))(3+) in the [2Fe-2S] clusters. The doubly NH.S hydrogen-bonded thiolate ligand effectively prevents the ligand exchange reaction by benzenethiol because the two amide NH groups stabilize the thiolate by protection from dissociation.  相似文献   

20.
CO-NH(3) and CO-NH(3)-H(2)O ices at 25-130 K were bombarded by (252)Cf fission fragments ( approximately 65 MeV at the target surface) and the emitted secondary ions were analyzed by time-of-flight mass spectrometry (TOF-SIMS). It is observed that the mass spectra obtained from both ices have similar patterns. The production of hybrid ions (formed from CO and NH(3) molecules) emitted from CO-NH(3) ice has already been reported by R. Martinez et al., Int. J. Mass. Spectrom. 262 (2006) 195; here, the secondary ion emission and the modifications of the CO--NH(3) ice structure during the temperature increase of the ice are addressed. These studies are expected to throw light on the sputtering from planetary and interstellar ices and the possible formation of new organic molecules in CO-NH(3)-H(2)O ice by megaelectronvolt ion bombardment. The presence of water in the CO-NH(3) ice mixture generates molecular ion series such as (NH(3))(p-q)(H(2)O)(q)CO(+) and replaces the cluster series (NH(3))(n)NH(4) (+) emission by the hybrid series (NH(3))(I-i)(H(2)O)(i=1, 2...I)H(+). The distribution of NH(3) and H(2)O molecules within the cluster groups indicates that ammonia and water mix homogeneously in the icy condensate at T = 25 K. The desorption yield distribution of the cluster series (NH(3))(n)NH(4) (+) is described by the sum of two exponential functions: one, slow-decreasing, attributed to the fragmentation of the solid target into clusters; and another, fast-decreasing, due to a local sublimation followed by recombination of ammonia molecules. The analysis of the time-temperature dependence of these two yield components gives information on the formation process of molecular ions, the transient composition of the ice target and structural changes of the ice. Data suggest that the amorphous and porous structure of the NH(3) ice, formed by the condensation of the CO--NH(3) gas at T = 25 K, survives CO sublimation until the occurrence of a phase transition around 80 K, which produces a more fragile ice structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号