首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
采用量子力学与分子力学组合(QM/MM)方法对人工设计逆醛缩酶RA95.5-8F催化β-羟基酮化合物裂解反应的机理进行了研究. 结果表明, 裂解反应主要包括赖氨酸Lys1083对底物的亲核进攻、 Schiff碱形成、 烯胺水解及C—N断裂等过程, C—N键裂解生成丙酮为整个反应的决速步骤, 能垒为106.27 kJ/mol; 活性中心的赖氨酸Lys1083、 酪氨酸Tyr1051、 天冬酰胺Asn1110和酪氨酸Tyr1180构成一个催化四联体, Lys1083通过与底物形成席夫碱对底物进行活化, Tyr1051作为催化酸碱参与质子转移过程, 催化四联体的氢键网络有利于反应过渡态的稳定并使R-构型的底物更容易结合在活性位点, 导致RA95.5-8F对R构型底物具有高的选择性和催化活性.  相似文献   

2.
L1 β-Lactamase催化反应机理研究   总被引:1,自引:0,他引:1  
用混合量子力学和分子力学(QM/MM)方法和密度泛函理论讨论了L1 β-Lactamase催化Nitrocefin水解的过程, 研究结果表明, 反应为多步反应: 第一步亲核进攻反应为反应的决速步骤, 并且伴随着酰胺键的断裂, 第二步反应为质子迁移反应. 同时讨论了金属锌在反应中的作用.  相似文献   

3.
Histone lysine methylation is emerging as an important mechanism to regulate chromatin structure and gene activity. To provide theoretical understanding of its reaction mechanism and product specificity, ab initio quantum mechanical/molecular mechanical free energy (QM/MM-FE) calculations and molecular dynamics simulations have been carried out to investigate the histone lysine methyltransferase SET7/9. It is found that the methyl-transfer reaction catalyzed by SET7/9 is a typical in-line S(N)2 nucleophilic substitution reaction with a transition state of 70% dissociative character. The calculated average free energy barrier at the MP2(6-31+G) QM/MM level is 20.4 +/- 1.1 kcal/mol, consistent with the activation barrier of 20.9 kcal/mol estimated from the experimental reaction rate. The barrier fluctuation has a strong correlation with the nucleophilic attack distance and angle in the reactant complex. The calculation results show that the product specificity of SET7/9 as a monomethyltransferase is achieved by disrupting the formation of near-attack conformations for the dimethylation reaction.  相似文献   

4.
The role solvent plays in reactions involving frustrated Lewis pairs (FLPs)—for example, the stoichiometric mixture of a bulky Lewis acid and a bulky Lewis base—still remains largely unexplored at the molecular level. For a reaction of the phosphorus/boron FLP and dissolved CO2 gas, first principles (Born–Oppenheimer) molecular dynamics with explicit solvent reveals a hitherto unknown two‐step reaction pathway—one that complements the concerted (one‐step) mechanism known from the minimum‐energy‐path calculations. The rationalization of the discovered reaction pathway—that is, the stepwise formation of P?C and O?B bonds—is that the environment (typical organic solvents) stabilizes an intermediate which results from nucleophilic attack of the phosphorus Lewis base on CO2. This finding is significant because presently the concerted reaction‐path paradigm predominates in the rationalization of FLP reactivity. Herein we point out how to attain experimental proof of our results.  相似文献   

5.
Despite a long history of experimental and theoretical investigation, the mechanism of the Diels-Alder (DA) reaction has been controversial since its discovery 80 years ago. From these investigations, two schools of thought have emerged, namely that the reaction can proceed via a concerted, symmetric or asymmetric mechanism or via a nonconcerted mechanism involving a zwitterion or diradical as an intermediate. Here, we employ finite temperature ab initio molecular dynamics simulations, employing forces computed "on the fly" from electronic structure calculations, to investigate the microscopic mechanism of DA adduct formation between 1,3-butadiene and the Si(100)-2x1 surface. Free energy profiles and nonequilibrium trajectories strongly suggest a nonconcerted mechanism that forms a zwitterionic intermediate state. This mechanism, which begins with a nucleophilic attack of the C=C double bond on the positive member of a charge-asymmetric buckled Si-Si dimer, was previously shown to be common to the formation of a wide range of adducts that can form on the surface.  相似文献   

6.
The mechanism of the nucleotidyl transfer reaction catalyzed by yeast RNA polymerase II has been investigated using molecular mechanics and quantum mechanics methods.Molecular dynamics(MD) simulations were carried out using the TIP3 water model and generalized solvent boundary potential(GSBP) by CHARMM based on the X-ray crystal structure.Two models of the ternary elongation complex were constructed based on CHARMM MD calculations.All the species including reactants,transition states,intermediates,and products were optimized using the DFT-PBE method coupled with the basis set DZVP and the auxiliary basis set GEN-A2.Three pathways were explored using the DFT method.The most favorable reaction pathway involves indirect proton migration from the RNA primer 3’-OH to the oxygen atom of-phosphate via a solvent water molecule,proton rotation from the oxygen atom of-phosphate to the-phosphate side,the RNA primer 3’-O nucleophilic attack on the-phosphorus atom,and P-O bond breakage.The corresponding reaction potential profile was obtained.The rate limiting step,with a barrier height of 21.5 kcal/mol,is the RNA primer 3’-O nucleophilic attack,rather than the commonly considered proton transfer process.A high-resolution crystal structure including crystallographic water molecules is required for further studies.  相似文献   

7.
Quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulations indicate that the reaction of native HEWL with its natural substrate involves a covalent intermediate, in contrast to the 'textbook' mechanism for this seminal enzyme.  相似文献   

8.
A base-catalyzed hydrolysis reaction of thiolester has been studied in both gas and solution phases using two ab initio quantum mechanics calculations such as Gaussian09 and CPMD. The free-energy surface along the reaction path is also constructed using a configuration sampling technique, namely, the metadynamics method. While there are two different reaction paths obtained for the potential profile of the base-catalyzed hydrolysis reaction for thiolester in the gas phase, a triple-well reaction path is computed for the reaction in the solution phase by two quantum mechanics calculations. Unlike the S(N)2 mechanism (a concerted mechanism) found for the gas-phase reaction, a nucleophilic attack from the hydroxide ion on the carbonyl carbon to yield a tetrahedral intermediate (a stepwise mechanism) is observed for the solution-phase reaction. Moreover, the energy profiles computed by these two theoretical calculations are found to be very comparable with those determined experimentally.  相似文献   

9.
Zhang Y  Herndon JW 《Organic letters》2003,5(12):2043-2045
[reaction: see text] The coupling of enyne-imines with Fischer carbene complexes leads to the formation of alkenylpyrrole derivatives. Maximum yields of pyrrole adducts were obtained using N,N-dimethylhydrazones. A mechanism involving alkyne insertion followed by nucleophilic attack of the imine nitrogen at the intermediate alkenylcarbene complex was proposed.  相似文献   

10.
The mechanism of enzymatic peptide hydrolysis in matrix metalloproteinase‐2 (MMP‐2) was studied at atomic resolution through quantum mechanics/molecular mechanics (QM/MM) simulations. An all‐atom three‐dimensional molecular model was constructed on the basis of a crystal structure from the Protein Data Bank (ID: 1QIB), and the oligopeptide Ace‐Gln‐Gly~Ile‐Ala‐Gly‐Nme was considered as the substrate. Two QM/MM software packages and several computational protocols were employed to calculate QM/MM energy profiles for a four‐step mechanism involving an initial nucleophilic attack followed by hydrogen bond rearrangement, proton transfer, and C? N bond cleavage. These QM/MM calculations consistently yield rather low overall barriers for the chemical steps, in the range of 5–10 kcal/mol, for diverse QM treatments (PBE0, B3LYP, and BB1K density functionals as well as local coupled cluster treatments) and two MM force fields (CHARMM and AMBER). It, thus, seems likely that product release is the rate‐limiting step in MMP‐2 catalysis. This is supported by an exploration of various release channels through QM/MM reaction path calculations and steered molecular dynamics simulations. © 2015 Wiley Periodicals, Inc.  相似文献   

11.
Cytidine deaminase (CDA) is a zinc metalloenzyme that catalyzes the hydrolytic deamination of cytidine to uridine. Zebularine (ZEB) binds to CDA, and the binding process leads to a near-perfect transition-state analogue (TSA) inhibitor at the active site with an estimated K(i) value of 1.2 x 10(-)(12) M. The interaction of CDA with the TSA inhibitor has become a paradigm for studying the tight TSA binding by enzymes. The formation of the TSA is catalyzed by CDA by a mechanism that is similar to the formation of the tetrahedral intermediate during the CDA-catalyzed reaction (i.e., through the nucleophilic attack of a Zn-hydroxide group on C(4)). It is believed that the TSA formed at the active site is zebularine 3,4-hydrate. In this paper, it is shown from QM/MM molecular dynamics and free energy simulations that zebularine 3,4-hydrate may in fact be unstable in the enzyme and that a proton transfer from the Zn-hydroxide group to Glu-104 during the nucleophilic attack could be responsible for the very high affinity. The nucleophilic attack by the Zn-hydroxide on C(4) is found to be concerted with two proton transfers. Such concerted process allows the TSA, an alkoxide-like inhibitor, to be stabilized through a mechanism that is similar to the transition-state stabilization in the general acid-base catalysis. It is suggested that the proton transfer from the Zn-hydroxide to Glu-104, which is required to generate the general acid for protonating the leaving ammonia, may play an important role in lowering the activation barrier during the catalysis.  相似文献   

12.
[reaction: see text] The kinetic of the reactions of phthalic and maleic anhydrides with different substituted phenols (Z-PhOH with Z = H, m-CH(3), p-CH(3), m-Cl, p-Cl, and m-CN) were studied in aqueous solution. Two kinetic processes well separated in time were observed. The fast one is attributed to the formation of the aryl ester in equilibrium with the anhydride and allows the determination of the rate of nucleophilic attack of the phenol on the anhydride (k(-)(A)). From the slow kinetic process, the equilibrium constant for this reaction was determined. The Bronsted-type plots for the nucleophilic attack of substituted phenols on the anhydrides were linear with slopes beta(Nuc) of 0.45 and 0.56 for phthalic and maleic anhydride, respectively. The results are consistent with a mechanism involving rate-determining nucleophilic attack and also with a concerted mechanism. The calculated effective charge on the atoms involved in the reactions and the Bronsted beta values are consistent with a mechanism involving a concerted or enforced concerted mechanism where a tetrahedral intermediate with significant lifetime is not formed along the reaction coordinate. The latter mechanism is preferred over the stepwise process.  相似文献   

13.
The catalytic mechanism of Bacillus subtilis guanine deaminase (bGD), a Zn metalloenzyme, has been investigated by a combination of quantum mechanical calculations using the multilayered ONIOM method and molecular dynamics simulations. In contrast to a previously proposed catalytic mechanism, which requires the bound guanine to assume a rare tautomeric state, the ONIOM calculations showed that the active-site residues of the enzyme do not affect the tautomeric state of guanine, and consequently the bound guanine is a tautomer that is the most abundant in aqueous solution. Two residues, Glutamate 55 and Aspartate 114, were found to play important roles in proton shuttling in the reaction. The proposed reaction path is initiated by proton transfer from a Zn-bound water to protonate Asp114. This process may be quite complex and rather dynamic in nature, as revealed by the molecular dynamics (MD) simulations, whereby another water may bridge the Zn-bound water and Asp114, which then is eliminated by positioning of guanine in the active site. The binding of guanine stabilizes protonated Asp114 by hydrogen bond formation. Asp114 can then transfer its proton to the N3 of the bound guanine, facilitating the nucleophilic attack on C2 of the guanine by the Zn-bound hydroxide to form a tetrahedral intermediate. This occurs with a rather low barrier. Glu55 then transfers a proton from the Zn-hydroxide to the amino group of the reaction intermediate and, at this point, the C2-N2 bond has lengthened by 0.2 A compared to guanine, making C2-N2 bond cleavage more facile. The C2-N2 bond breaks forming ammonia, with an energy barrier of approximately 8.8 kcal/mol. Ammonia leaves the active site, and xanthine is freed by the cleavage of the Zn-O2 bond, with a barrier approximately 8.4 kcal/mol. Along this reaction path, the highest barrier comes from C2-N2 bond cleavage, while the barrier from the cleavage of the Zn-O2 bond is slightly smaller. The Zn-O2 bond can be broken without the assistance of water during the release of xanthine.  相似文献   

14.
15.
Extensive combined quantum mechanical (B3LYP/6‐31G*) and molecular mechanical (QM/MM) molecular dynamics simulations have been performed to elucidate the hydrolytic deamination mechanism of cytosine to uracil catalyzed by the yeast cytosine deaminase (yCD). Though cytosine has no direct binding to the zinc center, it reacts with the water molecule coordinated to zinc, and the adjacent conserved Glu64 serves as a general acid/base to shuttle protons from water to cytosine. The overall reaction consists of several proton‐transfer processes and nucleophilic attacks. A tetrahedral intermediate adduct of cytosine and water binding to zinc is identified and similar to the crystal structure of yCD with the inhibitor 2‐pyrimidinone. The rate‐determining step with the barrier of 18.0 kcal/mol in the whole catalytic cycle occurs in the process of uracil departure where the proton transfer from water to Glu64 and nucleophilic attack of the resulting hydroxide anion to C2 of the uracil ring occurs synchronously. © 2016 Wiley Periodicals, Inc.  相似文献   

16.
A tandem bis-allylation of p-toluenesulfonyl isocyanate can be achieved by palladium-catalyzed three-component coupling reaction with allylstannanes and allyl chlorides. A high level of regioselectivity can be obtained by the appropriate choice of the allylic substituents. The reaction mechanism and the regiochemistry of the reaction can be explained by formation of an amphoteric bis-allylpalladium intermediate. This bis-allylpalladium intermediate undergoes an initial electrophilic attack on one of the allyl moieties followed by a nucleophilic attack on the other.  相似文献   

17.
It is believed that the binding of pyrimidin-2-one to cytosine deaminase (CD) leads to the formation of 4-[R]-hydroxyl-3,4-dihydropyrimidine (DHP). Here the formation of transition-state analogue (TSA) at the active site of yeast cytosine deaminase (yCD) is investigated by quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) and free energy simulations. It is shown that DHP may in fact be unstable in the active site and a proton transfer from the Zn hydroxide group to Glu-64 may occur during the nucleophilic attack, leading to an alkoxide-like TSA complex instead. The free energy simulations for the nucleophilic attack process show that the proton transfer from the Zn hydroxide to Glu-64 may play an important role in stabilizing the TSA complex.  相似文献   

18.
Full-quantum mechanical fragment molecular orbital-based molecular dynamics (FMO-MD) simulations were applied to the hydration reaction of formaldehyde in water solution under neutral conditions. Two mechanisms, a concerted and a stepwise one, were considered with respect to the nucleophilic addition and the proton transfer. Preliminary molecular orbital calculations by means of polarized continuum model reaction field predicted that the hydration prefers a concerted mechanism. Because the calculated activation barriers were too high for free FMO-MD simulations to give reactive trajectories spontaneously, a More O'Ferrall-Jencks-type diagram was constructed from the statistical analysis of the FMO-MD simulations with constraint dynamics. The diagram showed that the hydration proceeds through a zwitterionic-like (ZW-like) structure. The free energy changes along the reaction coordinate calculated by means of the blue moon ensemble for the hydration and the amination of formaldehyde indicated that the hydration proceeds through a concerted process through the ZW-like structure, whereas the amination goes through a stepwise mechanism with a ZW intermediate. In inspection of the FMO-MD trajectories, water-mediated cyclic proton transfers were observed in both reactions on the way from the ZW-like structure to the product. These proton transfers also have an asynchronous character, in which deprotonation from the nucleophilic oxygen atom (or nitrogen atom for amination) precedes the protonation of the carbonyl oxygen atom. The results showed the strong advantage of the FMO-MD simulations to obtain detailed information at a molecular level for solution reactions.  相似文献   

19.
New Delhi metallo-β-lactamase-1 (NDM-1) has emerged as a major global threat to human health for its rapid rate of dissemination and ability to make pathogenic microbes resistant to almost all known β-lactam antibiotics. In addition, effective NDM-1 inhibitors have not been identified to date. In spite of the plethora of structural and kinetic data available, the accurate molecular characteristics of and details on the enzymatic reaction of NDM-1 hydrolyzing β-lactam antibiotics remain incompletely understood. In this study, a combined computational approach including molecular docking, molecular dynamics simulations and quantum mechanics/molecular mechanics calculations was performed to characterize the catalytic mechanism of meropenem catalyzed by NDM-1. The quantum mechanics/molecular mechanics results indicate that the ionized D124 is beneficial to the cleavage of the C–N bond within the β-lactam ring. Meanwhile, it is energetically favorable to form an intermediate if no water molecule coordinates to Zn2. Moreover, according to the molecular dynamics results, the conserved residue K211 plays a pivotal role in substrate binding and catalysis, which is quite consistent with previous mutagenesis data. Our study provides detailed insights into the catalytic mechanism of NDM-1 hydrolyzing meropenem β-lactam antibiotics and offers clues for the discovery of new antibiotics against NDM-1 positive strains in clinical studies.  相似文献   

20.
We here present a theoretical study of the alkaline hydrolysis of a phosphodiester (methyl p-nitrophenyl phosphate or MpNPP) in the active site of Escherichia coli alkaline phosphatase (AP), a monoesterase that also presents promiscuous activity as a diesterase. The analysis of our simulations, carried out by means of molecular dynamics (MD) simulations with hybrid quantum mechanics/molecular mechanics (QM/MM) potentials, shows that the reaction takes place through a D(N)A(N) or dissociative mechanism, the same mechanism employed by AP in the hydrolysis of monoesters. The promiscuous activity observed in this superfamily can be then explained on the basis of a conserved reaction mechanism. According to our simulations the specialization in the hydrolysis of phosphomonoesters or phosphodiesters, developed in different members of the superfamily, is a consequence of the interactions established between the protein and the oxygen atoms of the phosphate group and, in particular, with the oxygen atom that bears the additional alkyl group when the substrate is a diester. A water molecule, belonging to the coordination shell of the Mg(2+) ion, and residue Lys328 seem to play decisive roles stabilizing a phosphomonoester substrate, but the latter contributes to increase the energy barrier for the hydrolysis of phosphodiesters. Then, mutations affecting the nature or positioning of Lys328 lead to an increased diesterase activity in AP. Finally, the capacity of this enzymatic family to catalyze the reaction of phosphoesters having different leaving groups, or substrate promiscuity, is explained by the ability of the enzyme to stabilize different charge distributions in the leaving group using different interactions involving either one of the zinc centers or residues placed on the outer side of the catalytic site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号