首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By means of surface tension measurement (Wilhelmy method), micellization and adsorbed film formation were investigated for three combinations of mixed surfactant systems, all of which are used for solubilizing membrane proteins: a typical zwitterionic surfactant, CHAPS (a derivative of cholic acid) with n-alkyl (octyl, nonyl and decyl)-N-glucamides, MEGA-n (n=8, 9, 10). The data based on plotting of surface tension (gamma) versus logarithmic total molarity (or molality) (Ct or Mt) as a function of mole fraction of surfactant 2 (2 corresponds to MEGA-n's) enabled us to determine critical micellization concentration (CMC), minimum surface tension at CMC (gammaCMC), surface excess (Gamma(t)), mean molecular surface area (Am), the minimum Gibbs energy (Gmin(S)) of adsorbed film of both single and mixed surfactant systems and partial molecular area (PMA) in addition to parameters such as pC20 and CMC/C20 being related to synergism accompanied by blending (mixing) in regard to surface activity as well as micelle forming ability. On the basis of the regular solution theory, the relations of compositions of singly dispersed phase (X2), micellar phase (Y2) and adsorbed film (Z2) were estimated, and then the interaction parameters in micelles (omegaR) and in the adsorbed film phase (omegaA) were also calculated. From both the CMC-X2 and CMC-Y2 curves, it was found for all the combinations to show synergistically enhanced ability of mixed micelle formation as well as surface tension reduction. The resultant synergism coming from blending CHAPS with MEGA-n's was discussed in comparison with different combinations of various types of surfactants including membrane proteins solubilizers.  相似文献   

2.
In the lungs, oxygen transfer from the inspired air to the capillary blood needs to cross the surfactant lining layer of the alveoli. Therefore, the gas transfer characteristics of lung surfactant film are of fundamental physiological interest. However, previous in vitro studies-most relied on the Langmuir-type balance-fail to cover the low surface tension range (i.e., less than the equilibrium surface tension of approximately 25 mJ/m2) due to film leakage. We have recently developed a novel in vitro experimental strategy, the combination of axisymmetric drop shape analysis and captive bubble technique (ADSA-CB), in studying the effect of surfactant films on interfacial gas transfer (Langmuir 2005, 21, 5446). In the present work, ADSA-CB is used as a micro-film-balance to study the effect of compressed bovine lipid extract surfactant (BLES) films on oxygen transfer. A low surface tension ranging from approximately 25 mJ/m2 to 2 mJ/m2 is studied. The experimental results suggest that lung surfactant films at a low surface tension near 2 mJ/m2 provide resistance to oxygen transfer, as indicated by a decrease of 30-50% in the mass transfer coefficient (kL) of oxygen in BLES suspensions with respect to water. At higher surface tension (i.e., >6 mJ/m2), the resistance to oxygen transfer is only modest, i.e., the decrease in kL is less than 20% compared to water. The experimental results suggest that lung surfactant plays a role in oxygen transfer in the pulmonary system.  相似文献   

3.
The effect of pH on the interfacial adsorption activity of pulmonary surfactant was examined. Measurements of the surface tension were made in a Wilhelmy-like surface microbalance specially designed to assay small volumes of hypophase in thermostatically controlled conditions. Alkaline pH caused a significant decrease of the surface activity of both pulmonary surfactant and a lipid extract from surfactant (LES) (containing all of the lipids and surfactant protein-B (SP-B) and surfactant protein-C (SP-C) hydrophobic surfactant proteins, but lacking surfactant protein-A). The pK calculated from the change of surface activity versus pH was 9.18±0.26 and 9.27±0.31 for pulmonary surfactant and LES, respectively. The results from this study support the idea that electrostatic interactions between basic residues of SP-B and SP-C and negatively charged surfactant phospholipids could be important for the interfacial adsorption activity of pulmonary surfactant.  相似文献   

4.
The interaction of iron III salts and cetylpyridinium chloride (CPC) has been studied at the air/water and silica/water interfaces. The surface tension of cetylpyridinium chloride has been determined in aqueous solutions in the presence of iron III chloride and iron III nitrate at two constant pH values, namely, 3.5 and 1.2. It is shown that the surface tension of the cationic surfactant depends upon the ionic strength of the solution through the pH adjustment in the presence of the former salt but not in the presence of the latter. The effect of iron III nitrate on the surface tension of CPC is similar to that of potassium nitrate, indicating that the iron III various-hydrolyzed species do not interfere with the composition of the air/water interface. The competitive adsorption of iron III nitrate salt and the cationic surfactant at a silica/water interface was next investigated. The adsorption isotherms were determined at pH 3.5. It is shown that although the iron III ions, which were added to the silica dispersion in the presence of the cetylpyridinium ions, were strongly bound to the anionic surface sites, the surfactant ions are not salted out in the solution but remain in close vicinity of the silica surface. Conversely as the cationic surfactant is added first to the silica dispersion in the presence of the adsorbed iron III ions, the metal ions and the surfactant ions are both coadsorbed onto the silica surface. It is suggested that iron III hydrolyzed or free cations and the cationic surfactant molecules may not compete for the same adsorption sites onto the silica surface.  相似文献   

5.
The role of the polyelectrolyte, poly(ethyleneimine), PEI, and the electrolytes NaCl and CaCl(2), on the adsorption of the anionic surfactant, sodium dodecylbenzenesulfonate, LAS, at the air-water interface have been investigated by neutron reflectivity and surface tension. The surface tension data for the PEI/LAS mixtures are substantially affected by pH and the addition of electrolyte, and are consistent with a strong adsorption of surface polymer/surfactant complexes down to relatively low surfactant concentrations. The effects are most pronounced at high pH, and this is confirmed by the adsorption data obtained directly from neutron reflectivity. However, the effects of the addition of PEI and electrolyte on the LAS adsorption are not as pronounced as previously reported for PEI/SDS mixtures. This is attributed primarily to the steric hindrance of the LAS phenyl group resulting in a reduction in the ion-dipole attraction between the LAS sulfonate and amine groups that dominates the interaction at high pH.  相似文献   

6.
Inhaled particles may land on the surface of the lung’s airspaces. Upon making contact with the airway wall, the processes of retention and clearance begin. Particle retention depends on many factors; among these are: (1) particle size, shape, solubility, surface chemistry and elastic properties of both the particles and the lung surface. (2) The anatomical location of the deposition site. (3) The structures with which the particle interacts at the site of deposition, including the surfactant film at the air–liquid interface, the aqueous phase, free cells like macrophages, lymphocytes and granulocytes, the epithelial cells and dendritic cells that reside at the basal side of the epithelium. Particles, after their deposition are wetted and displaced towards the epithelium by the surfactant film during the retention process. In vitro experiments have demonstrated that the extent of particle immersion depends on the surface tension of the surfactant film. The lower the surface tension, the greater is the immersion of the particles into the aqueous phase. Experimental results demonstrate consistently greater immersion of smaller particles into a liquid substrate covered with a surfactant film than that for larger particles. The exact mechanism, especially the initial wetting process, is not yet understood and requires further experiments. Line tension is a possible explanation for the dependence of particle displacement on particle size.  相似文献   

7.
In this article, the interfacial tension and interfacial dilational viscoelasticity of polystyrene sulfonate/surfactant adsorption films at the water–octane interface have been studied by spinning drop method and oscillating barriers method respectively. The experimental results show that different interfacial behaviors can be observed in different type of polyelectrolyte/surfactant systems. Polystyrene sulfonate sodium (PSS)/cationic surfactant hexadecanetrimethyl–ammonium bromide systems show the classical behavior of oppositely charged polyelectrolyte/surfactant systems and can be explained well by electrostatic interaction. In the case of PSS/anionic surfactant sodium dodecyl sulfate (SDS) systems, the coadsorption of PSS at interface through hydrophobic interaction with alkyl chain of SDS leads to the increase of interfacial tension and the decrease of dilational elasticity. For PSS/nonionic surfactant TX100 systems, PSS may form a sub-layer contiguous to the aqueous phase with partly hydrophobic polyoxyethylene chain of TX100, which has little effect on the TX100 adsorption film and interfacial tension.  相似文献   

8.
以全氟丁基为基础的具有高表面活性的氟表面活性剂   总被引:5,自引:0,他引:5  
杨百勤  陈凯  邢航  肖进新 《物理化学学报》2009,25(12):2409-2412
氟表面活性剂的环境和生物降解问题是最近的热点, 特别是全氟长链(≥C8)氟表面活性剂的应用限制乃至禁用已成为必然趋势. 本文合成了一种以短链的全氟丁基为基础的阳离子氟表面活性剂, N-[3-(二甲基胺基)丙基]全氟丁基磺酰胺盐酸盐(C4F9SO2NH(CH2)3NH(CH3)+2Cl-, 简称为PFB-MC). 该表面活性剂适用于强酸性环境, 具有极高的表面活性, 其溶液最低表面张力(19.80 mN·m-1)和通常的氟表面活性剂相当. 通过表面张力方法得到了固定pH(pH=2.6-2.7)情况下PFB-MC的表面张力-浓度对数(γ-lgc)曲线, 以及该pH下外加盐([NaCl]=0.1 mol·L-1)对表面张力的影响; 并进一步研究了pH对PFB-MC在其临界胶束浓度(cmc)前后的表面张力的影响.  相似文献   

9.
The pH-dependent influence of two different strongly alternating copolymers [poly(N,N'-diallyl-N,N'-dimethylammonium-alt-N-phenylmaleamic carboxylate) (PalPh) and poly(N,N'-diallyl-N,N'-dimethylammonium-alt-3,5-bis(carboxyphenyl)maleamic carboxylate) (PalPhBisCarb)] based on N,N'-diallyl-N,N'-dimethylammonium chloride and maleamic acid derivatives on the phase behavior of a water-in-oil (w/o) microemulsion system made from toluene-pentanol (1:1) and sodium dodecyl sulfate was investigated. It was shown that the optically clear phase range can be extended after incorporation of these copolymers, leading to an increased water solubilization capacity. Additionally, the required amount of surfactant to establish a clear w/o microemulsion depends on the pH value, which means the hydrophobicity of the copolymers. Conductivity measurements show that droplet-droplet interactions in the w/o microemulsion are decreased at acidic but increased at alkaline pH in the presence of the copolymers. From differential scanning calorimetry measurements one can further conclude that these results are in agreement with a change of the position of the copolymer in the interfacial region of the surfactant film. The more hydrophobic PalPh can be directly incorporated into the surfactant film, whereas the phenyl groups of PalPhBisCarb flip into the water core by increasing the pH value.  相似文献   

10.
Effect of ethoxylated nonyl phenol type non-ionic and alkyl sulfate type anionic surfactants on the film formation process of poly (vinyl acetate) and poly (vinyl acetate-acrylate) latexes are discussed. HLB value of non-ionic surfactant is shown to affect glass transition temperature, minimum film formation temperature and rate of film coalescence of vinyl acrylic latexes. Higher HLB non-ionic surfactant appears to be more compatible than the lower HLB ones with the fairly polar vinyl acrylic latex and form a well coalesced film. Presence of sodium lauryl sulfate in the latex is observed to result in incompatible regions on the latex film surface, typical of two phase morphology. Influences of surfactants on the film formation process in the polar vinyl acrylic latexes are compared and contrasted with the available data on the effects of surfactants in styrene butadiene latexes. The findings are discussed in terms of adsorption and interaction behavior of surfactants at polar vinyl acrylic latex surfaces and current theories of latex film formation mechanisms.  相似文献   

11.
The two dominant factors that were found to affect the stability of multiple emulsions in high HLB surfactant systems are the osmotic pressure imbalance between the internal aqueous phase and the external aqueous phase, and the adsorption/desorption characteristics of the emulsifier/surfactant film at the oil/water interface. Synergistic interaction between the low HLB emulsifier and the high HLB surfactant that produces very low interfacial tension of the order of 10(-2) mN/m at the oil/water interface was found to occur in some of the systems investigated. Long term stability was observed in multiple emulsion containing these systems. However, no synergy was observed in systems in which either the oil or the emulsifier, or both, contained unsaturated chains. In fact, desorption of the adsorbed surfactant film was observed in systems containing unsaturated chains. The observed desorption from the interface of the emulsifier in these systems was attributed mainly to the inability of the unsaturated chains to form a close packed, condensed interfacial film. Presence of closely packed, condensed interfacial film is necessary to prevent solubilization of the adsorbed low HLB emulsifier by the high HLB surfactant. Multiple emulsions prepared using systems containing unsaturated hydrocarbons were highly unstable.  相似文献   

12.
In pulmonary tuberculosis, Mycobacterium tuberculosis bacteria reside in the alveoli and are in close proximity with the alveolar surfactant. Mycolic acid in its free form and as cord factor, constitute the major lipids of the mycobacterial cell wall. They can detach from the bacteria easily and are known to be moderately surface active. We hypothesize that these surface-active mycobacterial cell wall lipids could interact with the pulmonary surfactant and result in lung surfactant dysfunction. In this study, the major phospholipid of the lung surfactant, dipalmitoylphosphatidylcholine (DPPC) and binary mixtures of DPPC:phosphatidylglycerol (PG) in 9:1 and 7:3 ratios were modelled as lung surfactant monolayers and the inhibitory potential of mycolic acid and cord factor on the surface activity of DPPC and DPPC:PG mixtures was evaluated using Langmuir monolayers. The mycobacterial lipids caused common profile changes in all the isotherms: increase in minimum surface tension, compressibility and percentage area change required for change in surface tension from 30 to 10 mN/m. Higher minimum surface tension values were achieved in the presence of mycolic acid (18.2 ± 0.7 mN/m) and cord factor (13.28 ± 1.2 mN/m) as compared to 0 mN/m, achieved by pure DPPC film. Similarly higher values of compressibility (0.375 ± 0.005 m/mN for mycolic acid:DPPC and 0.197 ± 0.003 m/mN for cord factor:DPPC monolayers) were obtained in presence of mycolic acid and cord factor. Thus, mycolic acid and cord factor were said to be inhibitory towards lung surfactant phospholipids. Higher surface tension and compressibility values in presence of tubercular lipids are suggestive of an unstable and fluid surfactant film, which will fail to achieve low surface tensions and can contribute to alveolar collapse in patients suffering from pulmonary tuberculosis. In conclusion a biophysical inhibition of lung surfactant may play a role in the pathogenesis of tuberculosis and may serve as a target for the development of new drug loaded surfactants for this condition.  相似文献   

13.
In our previous work (Macromolecules 2004, 37:2930), we found that the hydrophobic blocks of polyacrylamide modified with 2‐phenoxylethyl acrylate (POEA) and anionic surfactant sodium dodecyl sulfate (SDS) may form mixed associations at octane/water interface. However, the process involving the exchange of surfactant molecules between monomers and mixed associations in interface is so fast that we cannot obtain its characteristic time. In this article, the interfacial dilational viscoelastic properties of another hydrophobically associating block copolymer composed of acrylamide (AM) and a low amount of 2‐ethylhexyl acrylate (EHA) (<1.0 mol%) at the octane‐water interfaces were investigated by means of oscillating barriers method and interfacial tension relaxation method respectively. The influences of anionic surfactant SDS and nonionic surfactant Triton X‐100 on the dilational viscoelastic properties of 7000 ppm polymer solutions were studied. The results showed that the interaction between P(AM/2‐EHA) and SDS was similar to that of P(AM/POEA) and SDS. Moreover, we got the relaxation characteristic time of the fast process involving the exchange of s Triton X‐100 molecules between monomers and mixed associations.

We also found that the interfacial tension response of hydrophobically associating water‐soluble copolymers to the sinusoidal oscillation of interfacial area at low bulk concentration is as same as that of the typical surfactants: the interfacial tension decreases with the decrease of interfacial area because of the increase of interfacial active components. However, the interfacial tension increases with the decrease of interfacial area at 7000 ppm P(AM/2‐EHA), which is believed to be correlative with the structure of absorbed film. The results of another hydrophobically associating polymer P(AM/POEA) and polyelectrolyte polystyrene sulfonate (PSS) enhanced our supposition. The phase difference between area oscillation and tension oscillation has also been discussed considering the apparent negative value.  相似文献   

14.
Surfactant replacement therapy has a vital role in the management of respiratory distress syndrome (RDS). Several techniques and models have been largely used to investigate interfacial physico-chemical properties in vitro and to assist clinical efficiency of exogenous surfactant preparations (ESPs) in vivo. Among them are interfacial tensiometry (Langmuir balance coupled with Wilhelmy plate method for surface tension measurement) and black foam film (BFF) method for measuring the capability of ESPs for bilayer foam film formation.

Here, we report some freshly established data from a comparative study of Exosurf, Survanta, Curosurf, Alveofact and clinical samples of tracheal aspirate (TA) of newborns with RDS treated with Curosurf. New observations concerning the properties of foam films of ESPs are also reported and discussed.

Measured interfacial physico-chemical parameters prove “better” properties in vitro of the SP-B and -C containing preparations Curosurf and Alveofact. Their properties are similar, Alveofact showing a higher surface tension lowering capacity under dynamic conditions.

A comparison with measured interfacial parameters of clinical samples shows that after treatment with Curosurf the phospholipid concentration in tracheal aspirates (367 μg/ml) is higher than the minimum phospholipid concentration for stable black film formation (Ct) of all four ESPs studied, while before treatment this concentration (63 μg/ml) is lower than Ct.

Values of measured “dynamic” parameters of clinical samples after treatment with Curosurf approach those of the exogenous surfactant preparation itself.  相似文献   


15.
We present a large range of experimental data concerning the influence of surfactants on the well-known Landau-Levich-Derjaguin experiment where a liquid film is generated by pulling a plate out of a bath. The thickness h of the film was measured as a function of the pulling velocity V for different kinds of surfactants (C(12)E(6), which is a nonionic surfactant, and DeTAB and DTAB, which are ionic) and at various concentrations near and above the critical micellar concentration (cmc). We report the thickening factor α = h/h(LLD), where h(LLD) is the film thickness obtained without a surfactant effect, i.e., as for a pure fluid but with the same viscosity and surface tension as the surfactant solution, over a wide range of capillary numbers (Ca = ηV/γ, with η being the surfactant solution viscosity and γ its surface tension) and identify three regimes: (i) at small Ca α is large due to confinement and surface elasticity (or Marangoni) effects, (ii) for increasing Ca there is an intermediate regime where α decreases as Ca increases, and (iii) at larger (but still small) Ca α is slightly higher than unity due to surface viscosity effects. In the case of nonionic surfactants, the second regime begins at a fixed Ca, independent of the surfactant concentration, while for ionic surfactants the transition depends on the concentration, which we suggest is probably due to the existence of an electrostatic barrier to surface adsorption. Control of the physical chemistry at the interface allowed us to elucidate the nature of the three regimes in terms of surface rheological properties.  相似文献   

16.
It is shown that results of surface and interfacial tension measurements can be used to predict the type of micelles and of liquid crystalline phases which are formed in binary and ternary surfactant solutions. In particular it is possible to predict the position of l.c. cubic phases in ternary systems consisting of surfactant, hydrocarbon and water. Data to demonstrate the conclusions were obtained on the surfactants Alkyltrimethylammoniumbromides, Alkyldimethylaminoxides and Alkyldimethylphosphinoxides. It was found that the interfacial tension of a dilute micellar solution against a reference hydrocarbon is a most sensitive and indicative parameter for the prediction of the different structures. Large changes of the interfacial tension were observed for the three systems having the same hydrocarbon chainlength. The value of the interfacial tension directly reflects also the amount of hydrocarbon which can be solubilized in the micellar solution. Interfacial tensions larger than 1mN/m are indicative of globular micelles while interfacial tensions between 0.1 and 1 mN/m indicate the formation of rods. Values below 0.1 mN/m indicate disclike micelles or lamellar phases.

The interfacial tension depends somewhat on the kind of hydrocarbon which is used for the measurements. It is observed that for several surfactant solutions the interfacial tension passes through a shallow minimum when the chainlength of the hydrocarbon is increased from six to sixteen.  相似文献   

17.
The formation of thin wetting films on silica surface from aqueous solution of (a) tetradecyltrimetilammonium bromide (C14TAB) and (b) surfactant mixture of the cationic C14TAB with the anionic sodium alkyl- (straight chain C12–, C14– and C16–) sulfonates, was studied using the microscopic thin wetting film method developed by Platikanov. Film lifetimes, three-phase contact (TPC) expansion rates, receding contact angles and surface tension were measured. It was found that the mixed surfactants caused lower contact angles, lower rates of the thin aqueous film rupture and longer film lifetimes, as compared to the pure C14TAB. This behavior was explained by the strong initial adsorption of interfacial complexes from the mixed surfactant system at the air/solution interface, followed by adsorption at the silica interface. The formation of the interfacial complexes at the air/solution interface was proved by means of the surface tension data. It was also shown, that the chain length compatibility between the anionic and cationic surfactants controls the strength of the interfacial complex and causes synergistic lowering in the surface tension. The film rupture mechanism was explained by the heterocoagulation mechanism between the positively charged air/solution interface and the solution/silica interface, which remained negatively charged.  相似文献   

18.
The primary role of lung surfactant is to reduce surface tension at the air–liquid interface of alveoli during respiration. Axisymmetric drop shape analysis (ADSA) was used to study the effect of poly(ethylene glycol) (PEG) on the rate of surface film formation of a bovine lipid extract surfactant (BLES), a therapeutic lung surfactant preparation. PEG of molecular weights 3350; 8000; 10,000; 35,000; and 300,000 in combination with a BLES mixture of 0.5 mg/mL was studied. The adsorption rate of BLES alone at 0.5 mg/mL was much slower than that of a natural lung surfactant at the same concentration; more than 200 s are required to reach the equilibrium surface tension of 25 mJ/m2. PEG, while not surface active itself, enhances the adsorption of BLES to an extent depending on its concentration and molecular weight. These findings suggest that depletion attraction induced by higher molecular weight PEG (in the range of 8000 to 35,000) may be responsible for increasing the adsorption rate of BLES at low concentration. The results provide a basis for using PEG as an additive to BLES to reduce its required concentration in clinical treatment, thus reducing the cost for surfactant replacement therapy.  相似文献   

19.
Neutron reflectivity and surface tension have been used to investigate the pH sensitivity of the adsorption of poly-L-lysine hydrobromide and sodium dodecyl sulfate mixtures at the air-solution interface. The surface tension variation with surfactant concentration is complex, and between the critical aggregation concentration and critical micellar concentration there is a marked increase in the surface tension. The neutron reflectivity results show that this is associated with a depletion of the surface of polypeptide/surfactant complexes. The variations in the adsorption and surface tension with pH are attributed to changes in the polypeptide conformation at the interface and in solution.  相似文献   

20.
A water-soluble derivative of chitosan, carboxymethylchitosan (CMCH), was mixed with alkyltrimethylammoniumbromides (CmTAB) and was studied on the adsorption at air/water interface using equilibrium and dynamic surface tension method. The effects of surfactant and polymer concentrations, surfactant chain length, as well as pH of solution were investigated. Addition of the surfactants remarkably promotes the polymer adsorption. Increasing any one of surfactant concentration, surfactant chain length, and pH will facilitate the adsorption of the mixture whereas little effects of polymer concentration were observed. The results are explained in terms of the interaction between CMCH and CmTAB under different conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号