首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 600 毫秒
1.
Neutron reflectivity and surface tension have been used to characterize the adsorption of the polyelectrolyte/ionic surfactant mixture of poly(ethyleneimine) (PEI) and sodium dodecyl sulfate (SDS) at the air-water interface. The surface tension behavior and adsorption patterns show a strong dependence upon the solution pH. However, the SDS adsorption at the interface is unexpectedly most pronounced when the pH is high (when the polymer is essentially a neutral polymer) and when the polymer architecture is branched rather than linear. For both the branched and the linear PEI polymer/surfactant complex formation results in a significant enhancement of the amount of SDS at the interface, down to surfactant concentrations approximately 10(-6) M. For the branched PEI a transition from a monolayer to a multilayer adsorption is observed, which depends on surfactant concentration and pH. In contrast, for the linear polymer, only monolayer adsorption is observed. This substantial increase in the surface activity of SDS by complexation with PEI results in spontaneous emulsification of hexadecane in water and the efficient wetting of hydrophobic substrates such as Teflon. In regions close to charge neutralization the multilayer adsorption is accentuated, and more extensively ordered structures, giving rise to Bragg peaks in the reflectivity data, are evident.  相似文献   

2.
The role of the polyelectrolyte, poly(ethyleneimine), PEI, and the electrolytes NaCl and CaCl(2), on the adsorption of the anionic surfactant, sodium dodecylbenzenesulfonate, LAS, at the air-water interface have been investigated by neutron reflectivity and surface tension. The surface tension data for the PEI/LAS mixtures are substantially affected by pH and the addition of electrolyte, and are consistent with a strong adsorption of surface polymer/surfactant complexes down to relatively low surfactant concentrations. The effects are most pronounced at high pH, and this is confirmed by the adsorption data obtained directly from neutron reflectivity. However, the effects of the addition of PEI and electrolyte on the LAS adsorption are not as pronounced as previously reported for PEI/SDS mixtures. This is attributed primarily to the steric hindrance of the LAS phenyl group resulting in a reduction in the ion-dipole attraction between the LAS sulfonate and amine groups that dominates the interaction at high pH.  相似文献   

3.
The addition of electrolyte (0.1 M NaCl) is shown to have a significant impact upon the surfactant concentration and solution pH dependence of the adsorption of sodium dodecyl sulfate (SDS)/polyethyleneimine (PEI) complexes at the air-solution interface. Substantial adsorption is observed over a wide surfactant concentration range (from 10(-6) to 10(-)2 M), and over much of that range of concentrations the adsorption is characterized by the formation of surface multilayers. The surface multilayer formation is most pronounced at high pH and for PEI with a lower molecular weight of 2K, compared to the higher molecular weight of 25K. These results, obtained from a combination of neutron reflectivity and surface tension, highlight the substantial enhancement in surfactant adsorption achieved by the addition of a combination of the polyelectrolyte, PEI, and a simple electrolyte. Furthermore the effect of electrolyte on the pH dependence of the adsorption further highlights the importance of the hydrophobic interaction in surface surfactant/polyelectrolyte complex formation.  相似文献   

4.
The interactions between the weak polyelectrolyte, poly(2-(dimethylamino) ethyl methacrylate) or PDMAEMA, and the anionic surfactant sodium dodecyl sulfate (SDS) at the air-water interface have been investigated at pH = 3 and 9 using a combination of neutron reflectivity and surface tension measurements. By using deuterated PDMAEMA in combination with h-SDS and d-SDS, we have been able to directly determine the distribution of both the polymer and the surfactant at the air-water interface. At pH = 3, the polyelectrolyte is positively charged while at pH = 9 it is essentially uncharged. The enhancement in the adsorption of SDS at low coverage suggests that surface active polymer surfactant complexes are forming and adsorbing at the interface. This leads to close to monolayer adsorption of SDS, suggesting that it is surfactant monomers that are complexing with polymers that are in extended conformations parallel to the surface. As the concentration of SDS in the mixtures changes so does the surfactant content of the complexes, which affects the surface activity and hence the coverage of the complexes. Multilayer structures are formed at SDS concentrations of 0.1 and 1 mM, for pH = 3 and 9, respectively.  相似文献   

5.
Neutron reflectivity, NR, and surface tension have been used to study the adsorption at the air-solution interface of mixtures of the dialkyl chain cationic surfactant dihexadecyl dimethyl ammonium bromide (DHDAB) and the nonionic surfactants monododecyl triethylene glycol (C12E3), monododecyl hexaethylene glycol (C12E6), and monododecyl dodecaethylene glycol (C12E12). The adsorption behavior of the surfactant mixtures with solution composition shows a marked departure from ideal mixing that is not consistent with current theories of nonideal mixing. For all three binary surfactant mixtures there is a critical composition below which the surface is totally dominated by the cationic surfactant. The onset of nonionic surfactant adsorption (expressed as a mole fraction of the nonionic surfactant) increases in composition as the ethylene oxide chain length of the nonionic cosurfactant increases from E3 to E12. Furthermore, the variation in the adsorption is strongly correlated with the variation in the phase behavior of the solution that is in equilibrium with the surface. The adsorbed amounts of DHDAB and the nonionic cosurfactants have been used to estimate the monomer concentration that is in equilibrium with the surface and are shown to be in reasonable qualitative agreement with the variation in the mixed critical aggregation concentration (cac).  相似文献   

6.
Two polymer-surfactant mixtures have been studied at the air-water interface using neutron reflectivity and surface tension techniques. For the noninteracting system poly(N-isopropylacrylamide) (PNIPAM)/octaethyleneglycol mono n-decyl ether (C10E8), the adsorption behavior is competitive and driven purely by surface pressure (pi). When pi(polymer) > pi(surfactant), the surface layer consists of almost pure polymer, and for pi(polymer) < pi(surfactant), the polymer is displaced from the surface by the increasing pressure of the surfactant. Beyond the CMC, the polymer is completely displaced from the surface. For the interacting system PNIPAM/sodium dodecyl sulfate (SDS) where the two species interact strongly in the bulk beyond the critical aggregation concentration (CAC), the surface behavior is more original. Earlier neutron reflectivity studies investigated PNIPAM adsorption behavior where the SDS was contrast-matched to the solvent. In the present study, complementary measurements of SDS adsorption where PNIPAM is contrast-matched to the solvent give a complete view of the surface composition of the mixed system. At a constant polymer concentration, with increasing SDS, three main regimes are obtained. For C(SDS) < CAC, adsorption is governed by simple competition and PNIPAM is predominant at the interface. At intermediate SDS concentration (CAC < C(SDS) < x2, where x2 indicates the predominance of free SDS micelles), interfacial behavior is governed by bulk polymer-surfactant interaction. Adsorbed polymer is displaced from the interface to form PNIPAM-SDS complex in the bulk. SDS adsorption remains weak since most of the SDS molecules are used to form bulk polymer-surfactant aggregates. Further increase in SDS concentration results in continued displacement of PNIPAM and an abrupt increase in SDS adsorption. This is a result of saturation of bulk polymer chain with adsorbed micelles. Interestingly, beyond x2, PNIPAM is not completely displaced from the surface. A mixed PNIPAM-SDS adsorbed layer with enhanced packing of the SDS monolayer is formed.  相似文献   

7.
The impact of ethyleneimine architecture on the adsorption behavior of mixtures of small poly(ethyleneimines) and oligoethyleneimines (OEIs) with the anionic surfactant sodium dodecylsulfate (SDS) at the air-solution interface has been studied by surface tension (ST) and neutron reflectivity (NR). The strong surface interaction between OEI and SDS gives rise to complex surface tension behavior that has a pronounced pH dependence. The NR data provide more direct access to the surface structure and show that the patterns of ST behavior are correlated with substantial OEI/SDS adsorption and the spontaneous formation of surface multilayer structures. The regions of surface multilayer formation depend upon SDS and OEI concentrations, on the solution pH, and on the OEI architecture, linear or branched. For the linear OEIs (octaethyleneimine, linear poly(ethyleneimine) or LPEI(8), and decaethyleneimine, LPEI(10)) with SDS, surface multilayer formation occurs over a range of OEI and SDS concentrations at pH 7 and to a much lesser extent at pH 10, whereas at pH 3 only monolayer adsorption occurs. In contrast, for branched OEIs BPEI(8) and BPEI(10) surface multilayer formation occurs over a wide range of OEI and SDS concentrations at pH 3 and 7, and at pH 10, the adsorption is mainly in the form of a monolayer. The results provide important insight into how the OEI architecture and pH can be used to control and manipulate the nature of the OEI/surfactant adsorption.  相似文献   

8.
We investigated the interaction between an anionic polyelectrolyte (carboxymethylcellulose) and cationic surfactants (DTAB, TTAB, and CTAB) at the air/water interface, using surface tension, ellipsometry, and Brewster angle microscopy techniques. At low surfactant concentration, a synergistic phenomenon is observed due to the co-adsorption of polyelectrolyte/surfactant complexes at the interface, which decreases the surface tension. When the surfactant critical aggregation concentration (cac) is reached, the adsorption saturates and the thickness of the adsorbed monolayer remains constant until another characteristic surfactant concentration, C0, is reached, at which all the polymer charges are bound to surfactant in bulk. Above C0, the absorbed monolayer becomes much thicker, suggesting adsorption of bulk aggregates, which have become more hydrophobic due to charge neutralization.  相似文献   

9.
The effect of alkyl chain length and electrolyte on the adsorption of sodium alkyl sulfate surfactants and the oppositely charged polyelectrolyte, polyDMDAAC, at the air-water interface has been investigated by surface tension and neutron reflectivity. The variations in the patterns of adsorption and surface tension behavior with alkyl chain length and electrolyte are discussed in the context of the competition between the formation of surface active surfactant/polyelectrolyte complexes and polyelectrolyte/surfactant micelle complexes in solution. A theoretical approach based on the law of mass action has been used to predict the surface effects arising from the competition between the formation of polyelectrolyte/surfactant surface and solution complexes and the formation of free surfactant micelles. This relatively straightforward model is shown to reproduce the principal features of the experimental results.  相似文献   

10.
The adsorption of the surface-active protein hydrophobin, HFBII, and the competitive adsorption of HFBII with the cationic, anionic, and nonionic surfactants hexadecyltrimethylammonium bromide, CTAB, sodium dodecyl sulfate, SDS, and hexaethylene monododecyl ether, C(12)E(6), has been studied using neutron reflectivity, NR. HFBII adsorbs strongly at the air-water interface to form a dense monolayer ~30 ? thick, with a mean area per molecule of ~400 ?(2) and a volume fraction of ~0.7, for concentrations greater than 0.01 g/L, and the adsorption is independent of the solution pH. In competition with the conventional surfactants CTAB, SDS, and C(12)E(6) at pH 7, the HFBII adsorption totally dominates the surface for surfactant concentrations less than the critical micellar concentration, cmc. Above the cmc of the conventional surfactants, HFBII is displaced by the surfactant (CTAB, SDS, or C(12)E(6)). For C(12)E(6) this displacement is only partial, and some HFBII remains at the surface for concentrations greater than the C(12)E(6) cmc. At low pH (pH 3) the patterns of adsorption for HFBII/SDS and HFBII/C(12)E(6) are different. At concentrations just below the surfactant cmc there is now mixed HFBII/surfactant adsorption for both SDS and C(12)E(6). For the HFBII/SDS mixture the structure of the adsorbed layer is more complex in the region immediately below the SDS cmc, resulting from the HFBII/SDS complex formation at the interface.  相似文献   

11.
We present Monte Carlo simulations of nonionic surfactant adsorption at the liquid/vapor interface of a monatomic solvent. All molecules in the system, solvent and surfactant, are characterized by the Lennard-Jones (LJ) potential using differing interaction parameters. Surfactant molecules consist of an amphiphilic chain with a solvophilic head and a solvophobic tail. Adjacent atoms along the surfactant chain are connected by finitely extensible harmonic springs. Solvent molecules move via the Metropolis random-walk algorithm, whereas surfactant molecules move according to the continuum configurational bias Monte Carlo (CBMC) method. We generate quantitative thermodynamic adsorption and surface tension isotherms in addition to surfactant radius of gyration, tilt angles, and potentials of mean force. Surface tension simulations compared to those calculated from the simulated adsorbed amounts and the Gibbs adsorption isotherm agree confirming equilibrium in our simulations. We find that the classical Langmuir isotherm is obeyed for our LJ surfactants over the range of head and tail lengths studied. Although simulated surfactant chains in the bulk solution exhibit random orientations, surfactant chains at the interface orient roughly perpendicular and the tails elongate compared to bulk chains even in the submonolayer adsorption regime. At a critical surfactant concentration, designated as the critical aggregation concentration (CAC), we find aggregates in the solution away from the interface. At higher concentrations, simulated surface tensions remain practically constant. Using the simulated potential of mean force in the submonolayer regime and an estimate of the surfactant footprint at the CAC, we predict a priori the Langmuir adsorption constant, KL, and the maximum monolayer adsorption, Gammam. Adsorption is driven not by proclivity of the surfactant for the interface, but by the dislike of the surfactant tails for the solvent, that is by a "solvophobic" effect. Accordingly, we establish that a coarse-grained LJ surfactant system mimics well the expected equilibrium behavior of aqueous nonionic surfactants adsorbing at the air/water interface.  相似文献   

12.
At the end of the final spin cycle of the laundry process, the residual moisture content (RMC) of fabric is directly related to the dynamic surface tension of the residual water in the fabric. The LaPlace equation for capillary rise predicts that the capillary rise of solutions in a capillary is proportional to the surface tension at the air-liquid interface. If fabric can be considered to be a large ensemble of capillaries due to interfiber spacing, then the RMC of fabrics will be directly related to the surface tension of residual solution in the fabric. The use of a tailored rinse additive has the potential to decrease the surface tension of solution significantly, thus leading to a decrease in the residual water content of the fabric. It is expected that as the surfactant concentration increases the surface tension decreases. Hence, the RMC of fabrics must decrease with increasing surfactant concentration. However, a peak is observed in the RMC of fabrics before the critical micelle concentration (CMC) is reached. Prior to the CMC, it is proposed that a sudden adsorption of surfactant is occurring on the fabric surface leading to a decrease in bulk monomer concentration. The decrease in free monomer concentration should result in an increase in the equilibrium surface tension of the residual solution leading to a concomitant increase in RMC. Because the dynamic surface tension is measured on a short time scale (on the order of milliseconds), there will be less adsorption of monomer onto the newly created air-liquid interface of the bubbles during the measurement process. This decrease in adsorption should lead to a pronounced increase in the dynamic surface tension. This indeed was observed. The RMC correlates very well with the dynamic surface tension of the residual solution.  相似文献   

13.
The in vitro adsorption kinetics of lung surfactant at air-water interfaces is affected by both the composition of the surfactant preparations and the conditions under which the assessment is conducted. Relevant experimental conditions are surfactant concentration, temperature, subphase pH, electrolyte concentration, humidity, and gas composition of the atmosphere exposed to the interface. The effect of humidity on the adsorption kinetics of a therapeutic lung surfactant preparation, bovine lipid extract surfactant (BLES), was studied by measuring the dynamic surface tension (DST). Axisymmetric drop shape analysis (ADSA) was used in conjunction with three different experimental methodologies, i.e., captive bubble (CB), pendant drop (PD), and constrained sessile drop (CSD), to measure the DST. The experimental results obtained from these three methodologies show that for 100% relative humidity (RH) at 37 degrees C the rate of adsorption of BLES at an air-water interface is substantially slower than for low humidity. It is also found that there is a difference in the rate of surface tension decrease measured from the PD and CB/CSD methods. These experimental results agree well with an adsorption model that considers the combined effects of entropic force, electrostatic interaction, and gravity. These findings have implications for the development and evaluation of new formulations for surfactant replacement therapy.  相似文献   

14.
The adsorption of surface-active protein hydrophobin, HFBII, and HFBII/surfactant mixtures at the solid-solution interface has been studied by neutron reflectivity, NR. At the hydrophilic silicon surface, HFBII adsorbs reversibly in the form of a bilayer at the interface. HFBII adsorption dominates the coadsorption of HFBII with cationic and anionic surfactants hexadecyltrimethyl ammonium bromide, CTAB, and sodium dodecyl sulfate, SDS, at concentrations below the critical micellar concentration, cmc, of conventional cosurfactants. For surfactant concentrations above the cmc, HFBII/surfactant solution complex formation dominates and there is little HFBII adsorption. Above the cmc, CTAB replaces HFBII at the interface, but for SDS, there is no affinity for the anionic silicon surface hence there is no resultant adsorption. HFBII adsorbs onto a hydrophobic surface (established by an octadecyl trimethyl silane, OTS, layer on silicon) irreversibly as a monolayer, similar to what is observed at the air-water interface but with a different orientation at the interface. Below the cmc, SDS and CTAB have little impact upon the adsorbed layer of HFBII. For concentrations above the cmc, conventional surfactants (CTAB and SDS) displace most of the HFBII at the interface. For nonionic surfactant C(12)E(6), the pattern of adsorption is slightly different, and although some coadsorption at the interface takes place, C(12)E(6) has little impact on the HFBII adsorption.  相似文献   

15.
The equilibrium and dynamic surface tensions of five long-chain alkyl ammonium hydroxides (AAH) at the air/aqueous solution interface were investigated, and the effects of the length and number of alkyl chain on surface tensions had been discussed. With the increase of the length, the equilibrium surface tension (EST) increased from 28.65 to 40.52?mN/m. While, for the double chains at the critical micelle concentration (CMC), the EST decreased from 32.71 to 26.61?mN/m with the length increasing. In addition, the adsorption behaviors of the AAH were analyzed and the effective diffusion coefficients (Deff) were calculated on basis of the Ward–Tordai equation. Moreover, the time required to attain the EST decreases with the increase of surfactant concentration. The longer the C–H chain is, the lower surface tension at initial concentration is. What’s more, the diffusion processing of the AAH to air/water interface mainly depends on the surfactant concentration, and the adsorption is controlled by diffusion mechanism in a dilute concentration, while under a high concentration the adsorption is controlled by mixed diffusion–kinetic mechanism.  相似文献   

16.
The effects of the addition of the polyelectrolyte, poly(ethyleneimine), PEI, on the adsorption of the mixed surfactants of sodium dodecylsulfate, SDS, and dodecyldimethylaminoacetate, dodecyl betaine, at the air-water interface have been investigated using neutron reflectivity and surface tension. In the absence of PEI the SDS and dodecyl betaine surfactants strongly interact and exhibit synergistic adsorption at the air-water interface. The addition of PEI, at pH 7 and 10, results in a significant modification of the surface partitioning of the SDS/dodecyl betaine mixture. The strong surface interaction at high pH (pH 7 and 10) between the PEI and SDS dominates the surface behavior. For solution compositions in the range 20/80-80/20 mol ratio dodecyl betaine/SDS at pH 7 the surface composition is strongly biased towards the SDS. At pH 10 a similar behavior is observed for a solution composition of 50/50 mol ratio dodecyl betaine/SDS. This strong partitioning in favor of the SDS at high pH is attributed to the strong ion-dipole attraction between the SDS sulfate and the PEI imine groups. At pH 3, where the electrostatic interactions between the surfactant and the PEI are dominant, the dodecyl betaine more effectively competes with the SDS for the interface, and the surface composition is much closer to the solution composition.  相似文献   

17.
阳离子和两性表面活性剂对石英表面润湿性的影响   总被引:3,自引:0,他引:3  
利用座滴法研究了阳离子表面活性剂十六烷基醚羟丙基季铵盐(C16PC)和两性离子表面活性剂十六烷基醚羟丙基羧酸甜菜碱(C16PB)溶液在石英表面上的润湿性质, 考察了表面活性剂类型及浓度对接触角的影响趋势, 讨论了黏附张力和黏附功的变化规律. 研究发现, 两种表面活性剂在高能的石英表面的吸附造成石英-水的界面自由能(γsl)增大. C16PB通过弱相互作用随机吸附到石英表面, 其增大γsl的能力与降低表面张力(γ1g)的能力相当, 接触角(θ)随浓度变化不大. C16PC 随体相浓度增大能够在石英表面通过静电作用形成定向排列的单分子层, 而后在临界胶束浓度(cmc)附近形成双层结构, 接触角随浓度变化的趋势可分为4个区域, 并通过一个极大值.  相似文献   

18.
溶液中添加的苯磺酸钠(SNzS)和萘磺酸钠(SNphS)与C12-s-C12·2Br产生强烈结合, 增大了Gemini表面活性剂分子的疏水性, 明显促进其在气/液界面的吸附和在溶液中的聚集. 这使得体系降低水表面张力的效率和能力大大提高, 并且在表面活性剂浓度很低时就生成了小聚集体. 因而, 此时表面张力法测得的cmc仅具有表观上的意义, 只反映了表面活性剂在气/液界面达到饱和吸附时的临界浓度. SNphS的疏水性强于SNzS, 更有效地促进了C12-s-C12·2Br的吸附和聚集.  相似文献   

19.
利用座滴法研究了两性离子表面活性剂苄基取代烷基羧基甜菜碱(BCB)和苄基取代烷基磺基甜菜碱(BSB)在聚四氟乙烯(PTFE)表面上的润湿性质,考察了表面活性剂浓度对接触角的影响趋势,并讨论了粘附张力、固-液界面张力和粘附功的变化规律.研究发现,在低浓度时,表面活性剂通过疏水作用吸附到PTFE表面,疏水链苄基取代支链化使其在固-液界面上的吸附明显低于气-液界面,接触角在很大的范围内保持不变.当体相浓度增加到大于临界胶束浓度(cmc)时, BCB和BSB分子在固-液界面上继续吸附,分子逐渐直立,造成PTFE-液体之间的界面张力(γSL)进一步降低,表面亲水性增加,接触角随浓度增加明显降低;另一方面, BSB由于具有较大的极性头,在高浓度时空间阻碍作用明显,导致其对PTFE表面润湿性改变程度小于BCB.  相似文献   

20.
Consider the example of surfactant adsorbing from an infinite solution to a freshly formed planar interface. There is an implicit length scale in this problem, the adsorption depth h, which is the depth depleted to supply the interface with the absorbed surfactant. From a mass balance, h can be shown to be the ratio of the equilibrium surface concentration gamma eq to the bulk concentration C infinity. The characteristic time scale for diffusion to the interface is tau D = h2/D, where D is the diffusivity of the surfactant in solution. The significance of this time scale is demonstrated by numerically integrating the equations governing diffusion-controlled adsorption to a planar interface. The surface tension equilibrates within 1-10 times tau D regardless of bulk concentration, even for surfactants with strong interactions. Dynamic surface tension data obtained by pendant bubble method are rescaled using tau D to scale time. For high enough bulk concentrations, the re-normalized surface tension evolutions nearly superpose, demonstrating that tau D is indeed the relevant time scale for this process. Surface tension evolutions for a variety of surfactants are compared. Those with the smallest values for tau D equilibrate fastest. Since diffusion coefficients vary only weakly for surfactants of similar size, the differences in the equilibration times for various surfactant solutions can be attributed to their differing adsorption depths. These depth are determined by the equilibrium adsorption isotherms, allowing tau D to be calculated a priori from equilibrium surface tension data, and surfactant solutions to be sorted in terms of which will reduce the surface tension more rapidly. Finally, trends predicted by tau D to gauge what surfactant properties are required for rapid surface tension reduction are discussed. These trends are shown to be in agreement with guiding principles that have been suggested from prior structure-property studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号