首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A comparative catalytic study of Pd–Ag bimetallic catalysts and the commercial Lindlar catalyst (Pd–Pb/CaCO3) has been carried out in the hydrogenation of phenylacetylene (PA) and diphenylacetylene (DPA). The Pd–Ag catalysts have been prepared using the heterobimetallic complex PdAg2(OAc)4(HOAc)4 supported on MgAl2O4 and aluminas (α-Al2O3 and γ-Al2O3). Physicochemical studies have demonstrated that the reduction of supported Pd–Ag complex with hydrogen results in homogeneous Pd–Ag nanoparticles. Equal in selectivity to the Lindlar catalyst, the Pd–Ag catalysts are more active in DPA hydrogenation. The synthesized Pd–Ag catalysts are active and selective in PA hydrogenation as well, but the unfavorable ratio of the rates of the first and second stages of the process makes it difficult to kinetically control the reaction. The most promising results have been obtained for the Pd–Ag2/α-Al2O3 catalyst. Although this catalyst is less active, it is very selective and allows efficient kinetic control of the process to be carried out owing to the fact that, with this catalyst, the rate of hydrogenation of the resulting styrene is much lower than the rate of hydrogenation of the initial PA.  相似文献   

2.
A systematic study on the selective semihydrogenation of alkynes to alkenes on shape‐controlled palladium (Pd) nanocrystals was performed. Pd nanocrystals with a cubic shape and thus exposed {100} facets were synthesized in an aqueous solution through the reduction of Na2PdCl4 with L ‐ascorbic acid in the presence of bromide ions. The Pd nanocubes were tested as catalysts for the semihydrogenation of various alkynes such as 5‐decyne, 2‐butyne‐1,4‐diol, and phenylacetylene. For all substrates, the Pd nanocubes exhibited higher alkene selectivity (>90 %) than a commercial Pd/C catalyst (75–90 %), which was attributed to a large adsorption energy of the carbon–carbon triple bond on the {100} facets of the Pd nanocubes. Our approach based on the shape control of Pd nanocrystals offers a simple and effective route to the development of a highly selective catalyst for alkyne semihydrogenation.  相似文献   

3.
Metallic nanocrystals (NCs) with well‐defined sizes and shapes represent a new family of model systems for establishing structure–function relationships in heterogeneous catalysis. Here in this study, we show that catalyst poisoning can be utilized as an efficient strategy for nanocrystals shape and composition control, as well as a way to tune the catalytic activity of catalysts. Lead species, a well‐known poison for noble‐metal catalysts, was investigated in the growth of Pd NCs. We discovered that Pb atoms can be incorporated into the lattice of Pd NCs and form Pd–Pb alloy NCs with tunable composition and crystal facets. As model catalysts, the alloy NCs with different compositions showed different selectivity in the semihydrogenation of phenylacetylene. Pd–Pb alloy NCs with better selectivity than that of the commercial Lindlar catalyst were discovered. This study exemplified that the poisoning effect in catalysis can be explored as efficient shape‐directing reagents in NC growth, and more importantly, as a strategy to tailor the performance of catalysts with high selectivity.  相似文献   

4.
Hybrid mesoporous periodic organosilicas (Ph‐PMOs) with phenylene moieties embedded inside the silica matrix were used as a heterogeneous catalyst for the Ullmann coupling reaction in water. XRD, N2 sorption, TEM, and solid‐state NMR spectroscopy reveal that mesoporous Ph‐PMO supports and Pd/Ph‐PMO catalysts have highly ordered 2D hexagonal mesostructures and covalently bonded organic–inorganic (all Si atoms bonded with carbon) hybrid frameworks. In the Ullmann coupling reaction of iodobenzene in water, the yield of biphenyl was 94 %, 34 %, 74 % and for palladium‐supported Ph‐PMO, pure silica (MCM‐41), and phenyl‐group‐modified Ph‐MCM‐41 catalysts, respectively. The selectivity toward biphenyl reached 91 % for the coupling of boromobenzene on the Pd/Ph‐PMO catalyst. This value is much higher than that for Pd/Ph‐MCM‐41 (19 %) and Pd/MCM‐41 (0 %), although the conversion of bromobenzene for these two catalysts is similar to that for Pd/Ph‐PMO. The large difference in selectivity can be attributed to surface hydrophobicity, which was evaluated by the adsorption isotherms of water and toluene. Ph‐PMO has the most hydrophobic surface, and in turn selectively adsorbs the reactant haloaryls from aqueous solution. Water transfer inside the mesochannels is thus restricted, and the coupling reaction of bromobenzene is improved.  相似文献   

5.
An efficient heterogeneous Pd catalytic system has been developed, based on immobilization of Pd nanoparticles (PNPs) on a silica‐bonded propylamine–cyanuric–cysteine (SiO2pA–Cyan–Cys) substrate. The synthesized catalyst was characterized by transmission electron microscopy, scanning electron microscopy, FT‐IR, N2 adsorption analysis (BET), TGA and inductively coupled plasma/atomic emission spectroscopy, and catalytic activity of this catalyst was investigated in the Suzuki and Sonogashira cross‐coupling reactions. The catalysts showed excellent performance in these two reactions, including various aryl halide derivatives (except aryl chloride derivatives) with phenylboronic acid and phenylacetylene under green conditions. Moreover, the catalyst was recycled for several runs without any significant loss of catalytic activity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Recently, acid–base bifunctional catalysts have been considered due to their abilities, such as the simultaneous activation of electrophilic and nucleophilic species and their high importance in organic syntheses. However, the synthesis of acid–base catalysts is problematic due to the neutralization of acidic and basic groups. This work reports a facial approach to solve this problem via the synthesis of a novel bifunctional polymer using inexpensive materials and easy methods. In this way, at the first step, heterogeneous poly (styrene sulfonic acid‐n‐vinylimidazole) containing pentaerythritol tetra‐(3‐mercaptopropionate) (PETMP) and trimethylolpropane trimethacrylate (TMPTMA) cross‐linkers were synthesized in the pores of a mesoporous silica structure using click reaction as a novel bifunctional acid–base catalyst. After that, Ni‐Pd nanoparticles supported on poly (styrenesulfonic acid‐n‐vinylimidazole)/KIT‐6 as a novel trifunctional heterogeneous acid–base‐metal catalyst was prepared. The prepared catalysts were characterized by various techniques like FT‐IR, TGA, ICP‐AES, DRS‐UV, TEM, FE‐SEM, EDS‐Mapping, and XRD. The synthesized catalysts were efficiently used as bifunctional/trifunctional catalysts for one‐pot, deacetalization‐Knoevenagel condensation and one‐pot, three‐step and a sequential reaction containing deacetalization‐Knoevenagel condensation‐reduction reaction. It is important to note that the synthesized catalyst showing high chemo‐selectivity for the reduction of nitro group, alkenyl double bond and ester group in the presence of nitrile. Moreover, it was found that the different nanoparticles including Ni, Pd, and alloyed Ni‐Pd showing different chemo‐selectivity and catalytic activity in the reaction.  相似文献   

7.
In this work, different nitroaromatic compounds were successfully reduced to their corresponding aromatic amines with excellent conversion and selectivity in methanol at 50 °C by using Pd‐Pt nanoparticles immobilized on the modified grapheme oxide (m‐GO) and hydrogen as the reducing source. The catalytic efficiency of Pd and Pd‐Pt loading on the modified GO was investigated for the reduction of various nitroaromatic compounds, and the Pd‐Pt/m‐GO system demonstrated the highest conversion and selectivity. The catalyst was characterized by different techniques including FT‐IR, Raman, UV–Vis, XRD, BET, XPS, FESEM, EDS, and TEM. The metal nanoparticles with the size of less than 10 nm were uniformly distributed on the m‐GO. The catalyst could be reused at least five times without losing activity, showing the stability of the catalyst structure. Finally, the efficiency of the prepared catalyst was compared with Pd‐Pt/AC, and Pd‐Pt/GO catalysts.  相似文献   

8.
陈清波  罗来涛 《分子催化》2007,21(6):529-533
本文研究了Pd、Pt、Ru和Ag对Au/CeO2催化剂以及Pd含量对Au-Pd/CeO2催化剂甲醇部分氧化性能的影响,并运用XRD、TPD和TPR等手段对Au/CeO2和Au-Pd/CeO2催化剂进行了表征.结果表明,Pd和Pt的加入能提高Au/CeO2催化剂的活性,而Ru和Ag的加入效果正好相反.不同的Au/Pd比对Au-Pd/CeO2催化剂的活性和H2选择性的影响不同,其中Au/Pd=60:40的效果最好,因为Au60Pd40/CeO2催化剂形成的富Au型AuxPdy较多,甲醇的吸附温度较低和对反应产物H2的吸附较少.  相似文献   

9.
The semihydrogenation of alkynes into alkenes rather than alkanes is of great importance in the chemical industry. Unfortunately, state‐of‐the‐art heterogeneous catalysts hardly achieve high turnover frequencies (TOFs) simultaneously with almost full conversion, excellent selectivity, and good stability. Here, we used metal–organic frameworks (MOFs) containing Zr metal nodes (“UiO”) with tunable wettability and electron‐withdrawing ability as activity accelerators for the semihydrogenation of alkynes catalyzed by sandwiched palladium nanoparticles (Pd NPs). Impressively, the porous hydrophobic UiO support not only leads to an enrichment of phenylacetylene around the Pd NPs but also renders the Pd surfaces more electron‐deficient, which leads to a remarkable catalysis performance, including an exceptionally high TOF of 13835 h?1, 100 % phenylacetylene conversion 93.1 % selectivity towards styrene, and no activity decay after successive catalytic cycles. The strategy of using molecularly tailored supports is universal for boosting the selective semihydrogenation of various terminal and internal alkynes.  相似文献   

10.
Palladium, silver and palladium–silver catalysts supported on silica were prepared by coimpregnation of support with solution of AgNO3 and Pd(NO3)2. The catalysts were characterized by X-ray powder diffraction (XRD), temperature programmed reduction (TPR), time of flight ion mass spectrometry (ToF-SIMS), chemisorption of carbon monoxide and were tested in the reaction of selective oxidation of glucose to gluconic acid.

XRD and TPR studies have shown that an interaction between Pd and Ag on the surface of silica after oxidation at 500 °C and reduction at 260 °C leads to the formation of solid solutions.

ToF-SIMS images of the surface of 5% Ag/SiO2 catalyst after oxidation at 500 °C and reduction at 260 °C show that Ag atoms supported on silica are not distributed homogenously but tend to form regions of enhanced Ag concentration. Positive ions images of the surface of 5% Pd/SiO2 catalyst also display regions of enhanced concentration of Pd atoms, but they are more homogenously distributed on silica.

ToF-SIMS peak intensity ratio 108Pd+/107Ag+ for bimetallic 5% Pd–5% Ag/SiO2 catalysts has a lower value than that obtained for physical mixture 5% Pd/SiO2–5% Ag/SiO2 which indicates that the surface of bimetallic catalyst is enriched with silver atoms.  相似文献   


11.
We report a nanocarbon material with nanodiamond(ND) core and graphene shell(ND@G) as a support for Pd nanocatalysts. The designed catalyst performed good selectivity of styrene(85.2%) at full conversion of phenylacetylene and superior stability under mild conditions. Supported Pd catalysts are characterized by means of high resolution transmission electron microscopy(HRTEM), Raman, X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS) and H_2 temperature-programmed reduction(H_2-TPR).The results clearly show that formation of the strong metal-support interaction(SMSI) between Pd nanoclusters and the defective graphene shell helpfully modifies the selectivity and stability of the Pd-based catalysts.  相似文献   

12.
Two types of Pd nanoparticle catalysts were prepared having 2–4 nm particle size using silica gel and porous polymer beads as solid supports. 2‐Pyridinecarboxaldehyde ligand was anchored on commercially available 3‐aminopropyl‐functionalized silica gel followed by Pd metal dispersion. Bead‐shaped cross‐linked poly(4‐vinylpyridine‐co‐styrene) gel was prepared by an emulsifier‐free emulsion polymerization of 4‐vinylpyridine, styrene and divinylbenzene in the presence of ammonium persulfate and subsequently dispersing the Pd metal on the synthesized polymer. These catalysts were characterized by SEM, TEM and ICP techiniques with respect to appearance, size and possible leaching out, respectively. Furthermore, the reactivity of these catalysts was tested on hydrogenation of various α,β‐unsaturated carbonyl compounds using aqueous solvent under a hydrogen balloon (1 atm). The results showed that the Pd dispersed on silica was a more efficient catalyst than Pd dispersed on polymer and the former could be recycled more than 10 times without considerable loss in activity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
The hollow Pd–PVP–Fe nanosphere and Fe–PVP nanoparticle catalysts were synthesized by thermal method. Mixing of two metallic nanocatalysts was applied in the Csp–S cross-coupling reactions between diphenyl disulfide and phenylacetylene under mild conditions in water. Results show that bi-catalytic system has higher catalytic efficiencies than their monocatalytic systems due to synergy between two catalysts. Order of adding two metallic catalysts were adjusted into the coupling reaction medium. Therefore, various bi-catalytic systems were obtained and characterized by XRD, SEM, EBSD, EDX, UV–Vis spectra, and particle size analyzer. Under special order of adding, the obtained hollow nanoshell-sphere Fe@Fe/Pd reactor showed higher catalytic activity in the coupling reaction compared to other bi-catalytic systems. The Csp–S coupling products obtained of various diaryl disulfides and phenylacetylene at presence Fe@Fe/Pd (only 7.3?×?10?5 mmol Pd) catalyst with moderate to high yields in water solvent and mild reaction conditions. After the reaction, the catalyst/product(s) separation could be easily achieved with an external magnet and more than 95% of catalyst could be recovered. The recovered catalyst was characterized by XRD, SEM, EBSD, EDX, and UV–Vis spectra. The Fe@Fe/Pd was reused at least six repeating cycles without any loss of its high catalytic activity. Tuning morphology and chemical composition of bi-catalytic system are key mainstays of high activity of Fe@Fe/Pd in repeating cycles of cross-coupling reactions.  相似文献   

14.
Unique DNA‐promoted Pd nanocrystals on carbon nanotubes (Pd/DNA–CNTs) are synthesized for the first time, in which through its regularly arranged PO43? groups on the sugar–phosphate backbone, DNA directs the growth of ultrasmall Pd nanocrytals with an average size of 3.4 nm uniformly distributed on CNTs. The Pd/DNA–CNT catalyst shows much more efficient electrocatalytic activity towards oxygen reduction reaction (ORR) with a much more positive onset potential, higher catalytic current density and better stability than other Pd‐based catalysts including Pd nanocrystals on carbon nanotubes (Pd/CNTs) without the use of DNA and commercial Pd/C catalyst. In addition, the Pd/DNA–CNTs catalyst provides high methanol tolerance. The high electrocatalytic performance is mainly contributed by the ultrasmall Pd nanocrystal particles grown directed by DNA to enhance the mass transport rate and to improve the utilization of the Pd catalyst. This work may demonstrate a universal approach to fabricate other superior metal nanocrystal catalysts with DNA promotion for broad applications in energy systems and sensing devices.  相似文献   

15.
环己酮是重要的有机化工原料和工业溶剂,是制造尼龙、己内酰胺和己二酸的主要中间体,环己酮的绿色生产工艺受到人们关注.目前全世界环己酮年产量接近900万吨,但环己酮生产仍主要以环己烷为原料,采用富氧空气氧化为环己基过氧化氢,再在铬酸叔丁酯催化剂作用下分解为环己醇和环己酮的混合物,然后经一系列蒸馏精制后得到环己酮、工艺复杂、能耗高,而且设备腐蚀、环境污染及安全问题严重.因此,大量工作正致力于新工艺和新催化剂研究,其中光催化氧化、分子筛催化氧化和金属氧化物催化氧化等都有相关报道,同时还有学者开发了其它环己酮制备新方法,如环己烯水合法、苯加氢法、环己醇氧化法和苯酚加氢法等.苯酚直接选择性加氢合成环己酮研究具有重要意义.苯酚加氢通常有两种工艺,气相加氢和液相加氢,由于液相加氢具有无需将反应物汽化、能耗较低和催化剂反应活性高等优势而受到广泛关注.但是目前大量文献报道的苯酚加氢过程仍需要高温条件且较易产生环己醇和环己烷等副产物,大部分催化反应需在有机溶剂中进行,因此如何提高环己酮选择性,减小环境影响成为近年来的热门课题.在过去数年中,人们筛选了大量催化剂,其中Pd催化剂具有较高活性和目的产物选择性,因为其对羰基表现出较低的催化活性.研究还发现,催化剂载体对苯酚加氢产物分布有重要影响,酸性载体或酸性助剂的加入均能提高苯酚转化率和环己酮选择性,可能的原因是催化剂表面可与苯酚羟基形成O-H…π强相互作用,使苯酚分子更容易吸附在载体表面,而一旦苯酚经催化加氢生成环己酮,由于失去羟基与载体表面相互作用,环己酮更容易从载体表面脱附,从而避免过度加氢生成环己醇,同时酸性位点可以增强Pd的电子密度,提高催化加氢活性.另外,通过添加助剂也可有效改善催化剂性能.然而,到目前为止,通过单一的一种催化剂仍然很难同时实现苯酚的高转化率和环己酮的高选择性.因此,开发新催化剂和简便的生产工艺对环己酮高效高质量生产具有重要意义.本文使用一种多孔、不易溶解的酸性离子交换树脂Amberlyst-45(A-45)为载体,采用简单的浸渍工艺制备了一系列不同Pd负载量的Pd/A-45催化剂,详细考察了催化剂在水相中对苯酚选择性加氢制环己酮的催化活性和选择性,包括反应温度、催化剂用量、反应时间和Pd负载量等对反应活性的影响及催化剂重复使用情况,并且与传统的SiO_2,ZnO,MgO,Al_2O_3和活性炭负载的Pd催化剂进行对比.研究发现,Pd/A-45催化剂在温和反应条件(40-100℃,0.2-1 MPa)下具有极高的催化活性和选择性,在适宜的反应条件下苯酚转化率达到100%,环己酮选择性高于89%.进一步分析由不同活性金属负载量制备的不同粒径Pd/A-45催化剂的活性规律发现,苯酚加氢生成环己酮是一个结构敏感型反应,其中Pd颗粒尺寸为12-14 nm时更有利于环己酮生成.  相似文献   

16.
Electrochemical reduction of carbon dioxide (CO2) to CO is regarded as an efficient method to utilize the greenhouse gas CO2, because the CO product can be further converted into high value‐added chemicals via the Fisher–Tropsch process. Among all electrocatalysts used for CO2‐to‐CO reduction, Au‐based catalysts have been demonstrated to possess high selectivity, but their precious price limits their future large‐scale applications. Thus, simultaneously achieving high selectivity and reasonable price is of great importance for the development of Au‐based catalysts. Here, we report Ag@Au core–shell nanowires as electrocatalyst for CO2 reduction, in which a nanometer‐thick Au film is uniformly deposited on the core Ag nanowire. Importantly, the Ag@Au catalyst with a relative low Au content can drive CO generation with nearly 100 % Faraday efficiency in 0.1 m KCl electrolyte at an overpotential of ca. ?1.0 V. This high selectivity of CO2 reduction could be attributed to a suitable adsorption strength for the key intermediate on Au film together with the synergistic effects between the Au shell and Ag core and the strong interaction between CO2 and Cl? ions in the electrolyte, which may further pave the way for the development of high‐efficiency electrocatalysts for CO2 reduction.  相似文献   

17.
Heterogeneous palladium catalysts anchored on functionalized silica were prepared by sol–gel methods and their catalytic properties for the oxidative carbonylation of phenol to diphenyl carbonate (DPC) were investigated. The catalysts were characterized by means of IR, XPS, EA and BET. The Pd loading in the heterogeneous catalysts and leaching in solution were detected by atomic absorption. The effects of different reaction parameters such as temperature, solvent and inorganic cocatalyst on the yield of DPC and Pd leaching were also studied. It was found that Cu2O and tetrahydrofuran (THF) were the best partners with these heterogeneous catalysts. In the presence of 3 Å molecular sieves as dehydrating agent, the heterogeneous palladium catalyst prepared from 2‐acylpyridine revealed excellent catalytic performance and stability at 110 °C for 5 h, giving 13.7% yield of DPC based on phenol and 4.0% Pd loss in solution. The heterogeneous catalyst was more active and stable compared with traditional supported Pd? C catalyst under the same reaction conditions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
High activity ethylene polymerization catalysts have been prepared by the interaction of ethylmagnesium chloride in tetrahydrofuran with high surface area silica, followed by reaction with excess titanium tetrachloride in heptane. The catalysts were tested in ethylene—hexene copolymerization reactions in the presence of AlEt3 at 80°C. For comparison purposes, the copolymerization properties of a similar catalyst prepared without silica were also evaluated. Preparative conditions were identified which provide catalysts that possess high reactivity towards 1-hexane. The silica and the amount of magnesium used in catalyst preparation strongly affect the copolymerization properties of the catalysts. Generally, catalysts prepared with silica showed much higher sensitivity to 1-hexene (effective reactivity ratio r1 = 25–60) while a similar catalyst prepared without silica exhibited an r1 value of 125. Fractionation of the copolymer with a series of boiling solvents showed that all the catalysts exhibit a wide distribution of active centers with respect to reactivity ratios, with the r1 values varying from 5–7 to ca. 200. The width of a the center distribution depends on catalyst composition—it is the narrowest for the catalyst prepared without silica and is the widest for the catalysts with intermediate Ti : Mg ratios.  相似文献   

19.
Samples of Pd/C and Pd–Ag/C, where C represents carbon nanofibers (CNFs), are synthesized by methane decomposition on a Ni–Cu–Fe/Al2O3 catalyst. The properties of Pd/CNF are studied in the reaction of selective hydrogenation of acetylene into ethylene. It is found that the activity of the catalyst in hydrogenation reaction increases, while selectivity decreases considerably when the palladium content rises. The obtained dependences are caused by the features of palladium’s interaction with the carbon support. At a low Pd content (up to 0.04 wt %) in the catalyst, the metal is inserted into the interlayer space of graphite and the catalytic activity is zero. It is established by EXAFS that the main share of palladium in catalysts of 0.05–0.1 wt % Pd/CNF constitutes the metal in the atomically dispersed state. The coordination environment of palladium atoms consists of carbon atoms. An increase in the palladium content in a Pd/CNF catalyst up to 0.3 wt % leads to the formation of highly dispersed (0.8–1 nm) Pd particles. The Pd/CNF samples where palladium is mainly in the atomically dispersed state exhibit the highest selectivity in the acetylene hydrogenation reaction. The addition of silver to a 0.1 wt % Pd/CNF catalyst initially probably leads to the formation of Pd–Ag clusters and then to alloyed Pd–Ag particles. An increase in the silver content in the catalyst above 0.3% causes the enlargement of the alloyed particles and the palladium atoms are blocked by a silver layer, which considerably decreases the catalytic activity in the selective hydrogenation of acetylene.  相似文献   

20.
在Y分子筛上浸渍0.1 wt% Pd和0.1–0.5 wt% Ni,用X射线衍射表征了该催化剂的结晶度,用透射电镜测得平均金属粒径.催化剂中Pd和Ni的化学态用X射线光电子能谱测定,其酸性则用氨-程序升温脱附进行了表征,发现一些酸位被Ni2+离子交换.采用程序升温还原表征了HY分子筛负载的Pd, Ni和Pd-Ni催化剂的还原性能.正癸烷加氢异构化反应在200–450 oC和1 atm条件下进行.结果发现,当0.1 wt% Pd/HY中Ni添加量增至0.3 wt%时,正癸烷转化率和异构化选择性增加.单支链和双支链异构体选择性的增加表明该反应遵循质子化环丙烷中间体机理. Ni添加量超过阈值导致活性和异构化选择性急剧下降.综上可见,双金属催化剂更有利于选择性生成双支链异构体,其辛烷值更高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号