首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
A similarity index based on the hydrophilic/hydrophobic properties of molecules is presented. Such an index is defined based on the fractional partition of the free energy of solvation developed within the framework of the self-consistent reaction field MST model, which divides the free energy of solvation or the free energy of transfer into contributions assigned to the surface elements defining the solute/solvent interface. These surface contributions can be integrated to derive atomic or group contributions. The suitability of the index to compute the molecular similarity based on hydrophobic/hydrophilic properties is examined by considering their application in a variety of test systems, including structure-activity relationships, absorption properties, and molecular recognition. The similarity index is expected to be a very powerful tool in molecular similarity studies for compounds of chemical, biochemical, and pharmaceutical interest.  相似文献   

2.
Quantitative structure–activity relationship (QSAR) studies were conducted on an in-house database of cytochrome P450 enzyme 1A2 inhibitors using the comparative molecular field analysis (CoMFA), comparative molecular similarity analysis (CoMSIA) and hologram QSAR (HQSAR) approaches. The database consisted of 36 active molecules featuring varied core structures. The model based on the naphthalene substructure alignment incorporating 19 molecules yielded the best model with a CoMFA cross validation value q2 of 0.667 and a Pearson correlation coefficient r2 of 0.976; a CoMSIA q2 value of 0.616 and r2 value of 0.985; and a HQSAR q2 value of 0.652 and r2 value of 0.917. A second model incorporating 34 molecules aligned using the benzene substructure yielded an acceptable CoMFA model with q2 value of 0.5 and r2 value of 0.991. Depending on the core structure of the molecule under consideration, new CYP1A2 inhibitors will be designed based on the results from these models.  相似文献   

3.
4.
唐自强  刘长宁  冯长君 《化学通报》2020,83(10):935-939
基于比较分子力场分析(CoMFA)方法建立24种培氟沙星均三唑硫醚衍生物抗肝癌活性(pM)的三维定量构效关系(3D-QSAR)。训练集中20个化合物用于建立预测模型,测试集10个化合物(含模板分子及新设计的5个分子)作为模型验证。已建立的3D-QSAR模型的交叉验证系数(Rcv2)、非交叉验证系数(R2)分别为0.705、0.940,说明所建模型具有较强的稳定性和良好的预测能力。该模型中立体场、静电场贡献率依次为74.8%、25.2%,表明影响抗肝癌活性(pM)的主要因素是取代基的疏水性和空间契合,其次是库仑力、氢键及配位。基于三维等势图,设计了5个具有较高抗肝癌活性的分子,有待医学实验验证。  相似文献   

5.
Influenza endonucleases have appeared as an attractive target of antiviral therapy for influenza infection. With the purpose of designing a novel antiviral agent with enhanced biological activities against influenza endonuclease, a three-dimensional quantitative structure-activity relationships (3D-QSAR) model was generated based on 34 influenza endonuclease inhibitors. The comparative molecular similarity index analysis (CoMSIA) with a steric, electrostatic and hydrophobic (SEH) model showed the best correlative and predictive capability (q 2 = 0.763, r 2 = 0.969 and F = 174.785), which provided a pharmacophore composed of the electronegative moiety as well as the bulky hydrophobic group. The CoMSIA model was used as a pharmacophore query in the UNITY search of the ChemDiv compound library to give virtual active compounds. The 3D-QSAR model was then used to predict the activity of the selected compounds, which identified three compounds as the most likely inhibitor candidates.  相似文献   

6.
3D-QSAR uses statistical techniques to correlate calculated structural properties with target properties like biological activity. The comparison of calculated structural properties is dependent upon the relative orientations of molecules in a given data set. Typically molecules are aligned by performing an overlap of common structural units. This “alignment rule” is adequate for a data set, that is closely related structurally, but is far more difficult to apply to either a diverse data set or on the basis of some structural property other than shape, even for sterically similar molecules. In this work we describe a new algorithm for molecular alignment based upon optimization of molecular similarity indices. We show that this Monte Carlo based algorithm is more effective and robust than other optimizers applied previously to the similarity based alignment problem. We show that QSARs derived using the alignments generated by our algorithm are superior to QSARs derived using the more common alignment of fitting of common structural units. © 1997 by John Wiley & Sons, Inc. J Comput Chem 18 : 1344–1353, 1997  相似文献   

7.
Extensively validated 3D pharmacophore models for ALK (anaplastic lymphoma kinase) and EGFR (T790M) (epithelial growth factor receptor with acquired secondary mutation) were developed. The pharmacophore model for ALK (r2 = 0.96, q2 = 0.692) suggested that two hydrogen bond acceptors and three hydrophobic groups arranged in 3-D space are essential for the binding affinity of ALK inhibitors. Similarly, the pharmacophore model for EGFR (T790M) (r2 = 0.92, q2 = 0.72) suggested that the presence of a hydrogen bond acceptor, two hydrogen bond donors and a hydrophobic group plays vital role in binding of an inhibitor of EGFR (T790M). These pharmacophore models allowed searches for novel ALK and EGFR (T790M) dual inhibitors from multiconformer 3D databases (Asinex, Chembridge and Maybridge). Finally, the eight best hits were selected for molecular dynamics simulation, to study the stability of their complexes with both proteins and final binding orientations of these molecules. After molecular dynamics simulations, one hit has been predicted to possess good binding affinity for both ALK and EGFR (T790M), which can be further investigated for its experimental in-vitro/in-vivo activities.  相似文献   

8.
9.
Earlier we showed (A. K. Ghose and G. M. Crippen, J. Med. Chem., 28, 333, 1985) the necessity of atomic physicochemical parameters in three-dimensional receptor mapping. Here we derive more refined and widely applicable hydrophobicity parameters. Carbon, hydrogen, oxygen, nitrogen, sulfur, and halogens are classified into 110 atom types. Among these, the hydrophobic contributions of 90 atom types have been evaluated from the log P(water-octanol) values of 494 molecules, using the additive model and leastsquares technique. It gave a standard deviation of 0.347, a correlation coefficient of 0.962, and an explained variance of 0.908. These atomic values were used to predict the log P values of 69 compounds. The predicted values showed a standard deviation of 0.404 and a correlation coefficient of 0.896. This work has been compared with more conventional approaches.  相似文献   

10.
11.
Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) catalyses the fourth reaction of de novo pyrimidine biosynthesis in parasites, and represents an important target for the treatment of malaria. In this study, we describe pharmacophore-based virtual screening combined with docking study and biological evaluation as a rational strategy for identification of novel hits as antimalarial agents. Pharmacophore models were established from known PfDHODH inhibitors using the GALAHAD module with IC50 values ranging from 0.033 μM to 142 μM. The best pharmacophore model consisted of three hydrogen bond acceptor, one hydrogen bond donor and one hydrophobic features. The pharmacophore models were validated through receiver operating characteristic and Günere–Henry scoring methods. The best pharmacophore model as a 3D search query was searched against the IBS database. Several compounds with different structures (scaffolds) were retrieved as hit molecules. Among these compounds, those with a QFIT value of more than 81 were docked in the PfDHODH enzyme to further explore the binding modes of these compounds. In silico pharmacokinetic and toxicities were predicted for the best docked molecules. Finally, the identified hits were evaluated in vivo for their antimalarial activity in a parasite inhibition assay. The hits reported here showed good potential to become novel antimalarial agents.  相似文献   

12.
13.
Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) based on three-dimensional quantitative structure–activity relationship (3D-QSAR) studies were conducted on a series (39 molecules) of peptidyl vinyl sulfone derivatives as potential Plasmodium Falciparum cysteine proteases inhibitors. Two different methods of alignment were employed: (i) a receptor-docked alignment derived from the structure-based docking algorithm GOLD and (ii) a ligand-based alignment using the structure of one of the ligands derived from a crystal structure from the PDB databank. The best predictions were obtained for the receptor-docked alignment with a CoMFA standard model (q 2 = 0.696 and r 2 = 0.980) and with CoMSIA combined electrostatic, and hydrophobic fields (q 2 = 0.711 and r 2 = 0.992). Both models were validated by a test set of nine compounds and gave satisfactory predictive r 2 pred values of 0.76 and 0.74, respectively. CoMFA and CoMSIA contour maps were used to identify critical regions where any change in the steric, electrostatic, and hydrophobic fields may affect the inhibitory activity, and to highlight the key structural features required for biological activity. Moreover, the results obtained from 3D-QSAR analyses were superimposed on the Plasmodium Falciparum cysteine proteases active site and the main interactions were studied. The present work provides extremely useful guidelines for future structural modifications of this class of compounds towards the development of superior antimalarials.  相似文献   

14.
The relationships between the chemical structures and hydration environment of the polymers can provide significant insight into the water‐amphiphilic polymer interactions. Here, the hydrophobicity of amphiphilic block copolymers poly(ethylene tartaramide‐b‐alkyl isocyanate) is gradually tuned by using of a series of pendant alkyl (isopropyl, n‐butyl, cyclopentyl, and cyclohexyl) groups. Dynamics of hydration probed by low‐field NMR relaxometry exhibits a heterogeneous environment of water molecules, corresponding to tightly bound water with slow re‐orientational mobility and loosely bound water with fast re‐orientational mobility. Progressively larger amounts of bound water are present in the copolymers, ongoing from pendant isopropyl, n‐butyl, cyclopentyl, and finally to cyclohexyl group. Water in the copolymer bearing the cyclohexyl group has a significantly high partial specific heat capacity. Therefore, hydrophobic interaction between the polymer and water is enhanced when the hydrophobicity of the polymer is increased, resulting in considerable hydrophobic hydration with decreased mobility of the bound water. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 138–145  相似文献   

15.
Summary Acetohydroxyacid synthase (AHAS; EC 2.2.1.6) catalyzes the first common step in branched-chain amino acid biosynthesis. The enzyme is inhibited by several chemical classes of compounds and this inhibition is the basis of action of the sulfonylurea and imidazolinone herbicides. The commercial sulfonylureas contain a pyrimidine or a triazine ring that is substituted at both meta positions, thus obeying the initial rules proposed by Levitt. Here we assess the activity of 69 monosubstituted sulfonylurea analogs and related compounds as inhibitors of pure recombinant Arabidopsis thaliana AHAS and show that disubstitution is not absolutely essential as exemplified by our novel herbicide, monosulfuron (2-nitro-N-(4′-methyl-pyrimidin−2′-yl) phenyl-sulfonylurea), which has a pyrimidine ring with a single meta substituent. A subset of these compounds was tested for herbicidal activity and it was shown that their effect in vivo correlates well with their potency in vitro as AHAS inhibitors. Three-dimensional quantitative structure–activity relationships were developed using comparative molecular field analysis and comparative molecular similarity indices analysis. For the latter, the best result was obtained when steric, electrostatic, hydrophobic and H-bond acceptor factors were taken into consideration. The resulting fields were mapped on to the published crystal structure of the yeast enzyme and it was shown that the steric and hydrophobic fields are in good agreement with sulfonylurea-AHAS interaction geometry.  相似文献   

16.
17.
The chromatographic hydrophobicity index (CHI) is an HPLC‐based parameter that provides reliable guidance in optimization of pharmacological efficiency and adsorption, distribution, metabolism and exertion (ADME) profile of drug candidates. In the present work, classical and three‐dimensional quantitative structure–property relationship (QSPR) models were developed for prediction of CHI values of some 4‐hydroxycoumarin analogs on immobilized artificial membrane column. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) as 3D–QSPR methods were performed to gain insight into the key structural factors affecting on the chromatographic hydrophobicity of interested chemicals. The calculated parameters of Q 2, R 2 and standard error were 0.545, 0.996 and 0.773 for CoMFA model and 0.815, 0.986 and 1.44 for CoMSIA model, respectively. The contour maps for steric fields of the CoMFA model illustrate that the hydrophobicity of chemicals will be higher when the positions of R6, R7 and R8 in the 4‐hydroxycuomarin ring are substituted by alkyl groups. Moreover, by the analysis of the plots of electrostatic fields, it was concluded that the CHI value greatly increases if one hydrogen on coumarin ring is substituted by the F, Cl, Br, OH or OCH3 group.  相似文献   

18.
Summary Hydrophobic character is usually expressed in terms of the partition coefficient in 1-octanol-water (log PO/W). However, measurement of this coefficient is often problematic. Retention in micellar liquid chromatography is mainly due to hydrophobic interactions and can also be used as an index of hydrophobicity. A hydrophobicity scale was established with retention data foro-phthalaldehyde (OPA)-N-acetyl-L-cysteine (NAC) amino acid derivatives, using the glycine derivative as reference. Since the OPA-NAC derivatives only differ in the nature of R1 in the amino acid (R1CH(COOH)NH2), in the absence of electrostatic interactions the hydrophobic character of the substituent was responsible for retention. Linear relationships were obtained between log of the ratiok′ of amino acid derivatives:k′ of the glycine derivative for a given mobile phase, and logP O/W for the R1 substituent. Good correlations were also found for phenylthiohydantoin amino acid derivatives.  相似文献   

19.
Summary Hydrophobic character is usually expressed in terms of the partition coefficient in 1-octanol-water (log Po/w). However, measurement of this coefficient is often problematic. Retention in micellar liquid chromatography is mainly due to hydrophobic interactions and can also be used as an index of hydrophobicity. A hydrophobicity scale was established with retention data foro-phthalaldehyde (OPA)-N-acetyl-L-cysteine (NAC) amino acid derivatives, using the glycine derivative as reference. Since the OPA-NAC derivatives only differ in the nature of R1 in the amino acid (R1CH (COOH)NH2), in the absence of electrostatic interactions the hydrophobic character of the substituent was responsible for retention. Linear relationships were obtained between log of the ratiok′ of amino acid derivatives:k′ of the glycine derivative for a given mobile phase, and logP o/w for the R1 substituent. Good correlations were also found for phenylthiohydantoin amino acid derivatives.  相似文献   

20.
朱丽荔  徐筱杰 《中国化学》2003,21(3):261-269
Two kinds of Three-dimensional Quantitative Structure-activity Relationship(3D-QSAR) methods,comparative molecular filed analysis(CoMFA) and comparative molecular similarity indices analysis (CoMSIA) ,were applied to analyze the structure-activity relationship of a series of 63 butenolide ETA selective antagonists with respect to their inhibition against human ETA receptor,The CoMFA and CoMSIA models were developed for the conceivable alignment of the molecules based on a template structure from the crystallized data.The statistical results from the initial orientation of the aligned molecules show that the 3D-QSAR model from CoMFA(q^2=0.543) is obviously superior to that from the conventional CoMSIA(q^2=0.407).In order to refine the model,all-space search (ASS) was applied to minimize the field sampling process.By rotating and translating the molecular aggregate within the grid systematically,all the possible samplings of the molecular fields were tested and subsequently the one with the highest q^2 was picked out .The comparison of the sensitivity of CoMFA and CoMSIA to different space orientation shows that the CoMFA q^2 values are more sensitive to the translations and rotations of the aligned molecules with respect to the lattice than those of CoMSIA.The best CoMFA model from ASS was further refined by the region focused technique.The high quality of the best model is indicated by the high corss-validated correlation and the prediction on the external test set.The CoMFA coefficient contour plots identify several key features that explain the wide range of activities,which may help us to design new effective ETA selective antagonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号