首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Molecular docking and 3D-quantitative structure activity relationship analyses of peptidyl vinyl sulfones: <Emphasis Type="Italic">Plasmodium Falciparum</Emphasis> cysteine proteases inhibitors
Authors:Cátia Teixeira  José R B Gomes  Thierry Couesnon  Paula Gomes
Institution:1.Centro de Investiga??o em Química da Universidade do Porto, Departamento de Química, Faculdade de Ciências,Universidade do Porto,Porto,Portugal;2.CICECO, Universidade de Aveiro,Aveiro,Portugal;3.ITODYS, University Paris 7, CNRS UMR 7086,Paris Cedex13,France
Abstract:Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) based on three-dimensional quantitative structure–activity relationship (3D-QSAR) studies were conducted on a series (39 molecules) of peptidyl vinyl sulfone derivatives as potential Plasmodium Falciparum cysteine proteases inhibitors. Two different methods of alignment were employed: (i) a receptor-docked alignment derived from the structure-based docking algorithm GOLD and (ii) a ligand-based alignment using the structure of one of the ligands derived from a crystal structure from the PDB databank. The best predictions were obtained for the receptor-docked alignment with a CoMFA standard model (q 2 = 0.696 and r 2 = 0.980) and with CoMSIA combined electrostatic, and hydrophobic fields (q 2 = 0.711 and r 2 = 0.992). Both models were validated by a test set of nine compounds and gave satisfactory predictive r 2 pred values of 0.76 and 0.74, respectively. CoMFA and CoMSIA contour maps were used to identify critical regions where any change in the steric, electrostatic, and hydrophobic fields may affect the inhibitory activity, and to highlight the key structural features required for biological activity. Moreover, the results obtained from 3D-QSAR analyses were superimposed on the Plasmodium Falciparum cysteine proteases active site and the main interactions were studied. The present work provides extremely useful guidelines for future structural modifications of this class of compounds towards the development of superior antimalarials.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号