首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since the theory of generalized two-dimensional (2-D) correlation spectroscopy was proposed, it has been keenly concerned in scientific research and its analytical method has been widely applied in various analytical fields. The mathematical process to construct generalized 2-D correlation spectroscopy and the physical meaning of 2-D correlation spectral map are described, and three examples in the fields of chemical analysis and molecular biology are provided, such as the component analysis of organic solvent, the analysis of biological molecules in the solvent with different pH values and structural analysis of protein. The theory and analytical method of generalized 2-D correlation spectroscopy are also detailedly commented.  相似文献   

2.
After correlation analysis for general spectro- scopy, two-dimensional (2-D) correlation spectroscopy is obtained by extracting the information contained in the spectra in two dimensions, which is the function of two dependent spectral variables. 2-D correlation spectroscopy is initially regarded as an analytical data treatment method in the study of molecular interaction by using sinusoidal infrared sign[1]. In 1993, it was extended to generalized 2-D correlation spectroscopy, which used mo…  相似文献   

3.
Application of generalized two-dimensional (2D) correlation in various analytical fields is explored. 2D correlation is a powerful and versatile technique applicable to spectroscopy, chromatography, and other measurements. Construction of 2D spectra is relatively straightforward, requiring only a series of systematically varying analytical signals, like spectra or chromatograms, induced by an external perturbation applied to the system of interest. Perturbation can take many different forms, like change in temperature, pressure or concentration, chemical reactions, electrical or mechanical stimuli, and so on. A set of analytical signals collected under a perturbation are then converted to 2D correlation spectra, which provide rich and useful information about the presence of coordinated or independent changes among signals, as well as relative directions and sequential order of signal intensity variations. The signal resolution is also enhanced by spreading overlapped bands along the second dimension. Illustrative examples of 2D correlation are given for spectroscopic and chromatographic applications.  相似文献   

4.
Otsuka M  Fukui Y  Otsuka K  Ozaki Y 《The Analyst》2006,131(10):1116-1121
The purpose of this study is to develop a method of evaluating the enzymatic activity of trypsin in a solid-state based on Fourier transform infrared (FT-IR) spectra using chemoinformatics and two-dimensional (2-D) correlation spectroscopy. Crystalline trypsin powders are compressed at 0-4000 kg cm-2 by a compression/tension tester. The enzymatic activity of trypsin is assayed by the kinetic degradation method. Spectra of 10 calibration sample sets are recorded 3 times with a FT-IR spectrometer. The maximum intensity of FT-IR spectra and enzymatic activity of trypsin decrease as the compression pressure increases. The FT-IR spectra of trypsin samples are subjected to a principal component regression (PCR). A plot of the calibration data obtained is made between the actual and predicted trypsin activity based on a two-component model with gamma2=0.909 (n=30). The regression vector is almost the same as the loading vector for PC1. On the other hand, a generalized two-dimensional (2-D) correlation spectroscopic method is applied to FT-IR spectra of compressed trypsin. The result is consistent with that of the chemoinformatics method. The FT-IR chemoinformatics method allows for solid-state quantitative analysis of the bioactivity of the bulk powder of a polypeptide drug.  相似文献   

5.
The statistical properties of the cross correlation between two time series has been studied. An analytical expression for the cross correlation function's variance has been derived. On the basis of these results, a statistically robust method has been proposed to detect the existence and determine the direction of cross correlation between two time series. The proposed method has been characterized by computer simulations. Applications to single-molecule fluorescence spectroscopy are discussed. The results may also find immediate applications in fluorescence correlation spectroscopy (FCS) and its variants.  相似文献   

6.
Near infrared (NIR) spectroscopy has become a popular technique for process analytical chemistry and is being studied extensively in the petrochemical industry fields. NIR spectroscopy has several attractive properties:hardly any sample preparation is required,it is a nondestructive method, and it has a high signal-to-noise ratio. Furthermore, NIR spectroscopy has the possibility of remote sensing using optical fibers. All these advantages make NIR spectroscopy very suitable for on-line quality control in process analytical chemistry. In this paper some recent applications of NIR in analysis of petroleum products are reviewed.  相似文献   

7.
Recent noteworthy developments in the field of two-dimensional(2D) correlation spectroscopy are reviewed.2D correlation spectroscopy has become a very popular tool due to its versatility and relative ease of use.The technique utilizes a spectroscopic or other analytical probe from a number of selections for a broad range of sample systems by employing different types of external perturbations to induce systematic variations in intensities of spectra.Such spectral intensity variations are then converted into2 D spectra by a form of correlation analysis for subsequent interpretation.Many different types of 2D correlation approaches have been proposed.In particular,2D hetero-correlation and multiple perturbation correlation analyses,including orthogonal sample design scheme,are discussed in this review.Additional references to other important developments in the field of 2D correlation spectroscopy,such as projection correlation and codistribution analysis,were also provided.  相似文献   

8.
对科学产生最大影响的分析方法是核磁共振技术(NMR),它被广泛用于许多领域.本文结合作者的研究结果评述了NMR在组合化学中的应用,着重于NMR在固相合成的应用、液态NMR和NMR在高通量筛选中的应用.  相似文献   

9.
Multi-pulse laser induced breakdown spectroscopy (LIBS), in combination with the generalized linear correlation calibration method (GLCM), was applied to the quantitative analysis (fineness determination) of quaternary gold alloys. Accuracy and precision on the order of a few thousandths (‰) was achieved. The analytical performance is directly comparable to that of the standard cupellation method (fire assay), but provides results within minutes and is virtually non-destructive, as it consumes only a few micrograms of the sample.  相似文献   

10.
Artemisia annua is a promising and potent antimalarial herbal drug. This activity has been ascribed to its component artemisinin, a sesquiterpene lactone. The ability to determine artemisinin and its known analogs in plant extracts is an especially difficult task because the compounds are present in low concentrations, are thermolabile, and lack ultraviolet or fluorescent chromophores. We report herein a facile and rapid 1-D 1H, 1-D total correlation spectroscopy, 2-D 1H–13C heteronuclear single quantum coherence, and 1H–13C heteronuclear multiple bond correlation nuclear magnetic resonance techniques for the simultaneous identification and quantification of artemisinin and five of its analogs along with five flavonoids, an aromatic ketone, and camphor (in total, 13 compounds) in crude diethyl ether A. annua extract without the need of laborious isolation of the individual analytes. The above method was validated in terms of precision, linearity, and limit of detection. The analytical results were found to be in excellent agreement with those obtained with the use of the time consuming high-performance liquid chromatography with diode-array detection and liquid chromatography with tandem mass spectrometry for the compounds that standards were available.  相似文献   

11.
Huang H  Xie J  Chen H 《The Analyst》2011,136(8):1747-1752
The time-dependent adsorption behavior of human serum albumin (HSA) onto an ATR (ZnSe) crystal was investigated by two-dimensional (2D) correlation analysis and in situ ATR-FTIR spectroscopy following the secondary structural changes in the amide I region. The two major advantages of the generalized 2D correlation spectroscopy were first tested. New extra bands have been resolved by 2D correlation analysis, but they are either artifacts or a result of uncertainty on band position in generalized 2D correlation spectroscopy. The sequence of the intensity variations of the three sub-bands under the amide I band profile deduced from the 'sequential order' rules is contradictory to the experimental observation, which supports our argument on the 'sequential order' rules in generalized 2D correlation spectroscopy (H. Huang, Anal. Chem., 2007, 79, 8281-8292). Subsequent detailed analysis on the in situ ATR-IR spectra shows that the adsorption process of HSA on the ATR (ZnSe) crystal in aqueous solutions can be divided into three stages: no obvious conformational transitions in the first 25 min of adsorption of HSA molecules; large structural rearrangement from α-helix to random coil and short extended chain structures in a fully cooperative way from 25 to 50 min of adsorption; and further slight conformational transformation of short extended chain and turn structures into random coil with no sequential order after 50 min of adsorption.  相似文献   

12.
Recent progress in analytical terahertz (THz) spectroscopy is reviewed with illustrative examples showing that it is an effective method for detecting and identifying intermolecular interactions in chemical compounds, such as hydrogen bonds. The unique and characteristic properties of THz waves, their significance to both science and industry, and the bases of one of the successful fields of analytical THz spectroscopy, namely THz time-domain spectroscopy and THz imaging for chemical analysis, are described. Preliminary quantitative studies are presented to show the potential of THz spectroscopy for the detection and identification of intermolecular hydrogen bonds in unknown mixture samples. The selective detection of intramolecular hydrogen bonds and the detection of intramolecular interactions in ice are also introduced. Some brief remarks are provided on future developments, the main issues, and the prospects for analytical THz spectroscopy.  相似文献   

13.
A synergistic approach involving theory and experiment has been used to study the structure and properties of neutral and negatively charged cobalt-coronene [Com(coronene)] complexes. The calculations are based on density functional theory with generalized gradient approximation for exchange and correlation potential, while the experiments are carried out using photoelectron spectroscopy of mass selected anions. The authors show that the geometries of neutral and anionic Co(coronene) and Co2(coronene) are different from those of the corresponding iron-coronene complexes and that both the Co atom and the dimer prefer to occupy eta2-bridge binding sites. However, the magnetic coupling between the Co atoms remains ferromagnetic as it is between iron atoms supported on a coronene molecule. The accuracy of the theoretical results is established by comparing the calculated vertical detachment energies, and adiabatic electron affinities with their experimental data.  相似文献   

14.
The first-escape-time method has been used in solving the problem of calculating chemical reaction rate constants on the basis of a model in which a classical particle passes from one potential well to the other, this model describing non-Markovian Brownian motion by means of a generalized Langevin equation with the correlation function of the Ornstein-Uhlenbeck process. Singular perturbation theory was used in the solution. An analytical formula was obtained for the rate constant; calculations using this formula require the solution of a cubic equation. Analysis of the results shows that within a certain interval of parameters, non-Markov character is not manifested; i.e., the rate constant of the process is very little different from the result of the Kramers model. It has been established that the result obtained by this method is the same as that obtained by calculating the rate constant on the basis of the stationary flux method.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 24, No. 2, pp. 138–143, March–April, 1988.  相似文献   

15.
Chemical properties of active substances and insoluble excipient within tablets such as crystalline structures can be seen as an important index for solubility of ingredients. Spectroscopic imaging can potentially be a solid solution to understanding mechanisms at the molecular level and it may bring useful insight in terms of process analytical technique. In the present study, generalized two-dimensional (2D) correlation spectroscopy is utilized for the Raman image analysis of pharmaceutical tablets to reveal molecular interactions between chemical components. By using a spatial distance as a perturbation variable in 2D correlation scheme, synchronous and asynchronous correlation analysis becomes possible. Two kinds of pharmaceutical tablets, pentoxifylline (PTX) as an active substance and palmitic acid (PA) as an insoluble excipient, are prepared with different grinding times, 0.5 and 45 min. The 2D correlation analysis of Raman images of the tablets clearly reveals both physical and chemical effects of grinding process on the properties of the tablets. Asynchronous correlations indicate that a specific molecular structural change of PTX related to the crystallinity is induced by the grinding process. Namely, the crystallinity of PTX based on CH2 structure is a key factor to control the solubility of the tablets. Some properties of pharmaceutical tablets, i.e. solubility or distribution of components in turn may become possible by the simple grinding process. Detailed analysis of Raman images becomes possible by the 2D correlation spectroscopy.  相似文献   

16.
The many-electron system in one and two dimensions are studied within the geminal approach. The analytical expressions for the wave functions and ground-state energies are obtained for a number of 1-D and 2-D systems: conjugated polymers, organic conductors, 2-D conductors with square lattices, and others. It is shown that electron excitations of a kink type can exist in 2-D systems with mixed valency. In this case, the correlation pairing of current carriers arises as a result of correlation effects leading to superconducting properties of the system. © 1994 John Wiley & Sons, Inc.  相似文献   

17.
In the present study, the theory of the data treatment with scaling techniques for moving-window two-dimensional (scaling-MW2D) correlation analysis was first proposed. This new analytical method of spectroscopy can significantly enhance the resolving capacity of the moving-window two-dimensional (MW2D) correlation infrared spectroscopy in the direction of the perturbation variable. So, it strengthened the ability of MW2D to highlight the weak transitions. The in situ infrared spectra of four common polymers, including polyamide 66 (PA66), polystyrene-block-polybutadiene-block-polystyrene block copolymer (SBS), isotactic polypropylene (iPP), and polyoxymethylene (POM), were employed to illustrate the advantages of scaling-MW2D. In the applications of the present study, the conventional autocorrelation MW2D can only distinguish the melting point of PA66, the maximum crystallization temperature of POM, and the primary oxidation of SBS. However, the autocorrelation scaling-MW2D not only can more easily determine the above transitions, but also can identify PA66 brill transition, the dissociation of adsorbed water in PA66, POM secondary crystallization, the glass transition of hard blocks in SBS, and the generation of the aldehyde and hydroxyl groups during SBS oxidation. Our further study found that the selection of the scaling factor α was very important. The golden point α?=?0.618 was the best value, and satisfactory application results can be achieved. The slice scaling-MW2D was also investigated. The scaling-MW2D method of spectroscopy can be used elsewhere. The application of this analytical method should not be limited to the infrared spectra, and it also should not be limited to transitions in polymers. This method can be easily extended and applied to other materials and spectra.  相似文献   

18.
The aim of this tutorial review is to convince a broad readership that vibrational spectroscopy, although according to some vibrational spectroscopists seemingly less in focus nowadays than in days past, is far from 'dead'. It may seem to some that infrared and Raman spectroscopy are less in focus than in times past, despite the unique analytical capabilities. Vibrational spectroscopy is particularly powerful for non-destructive characterisation of substances, including living material. But compared to the past, a shift in applications has taken place, bringing new opportunities. This is partly due to the introduction of new features, including imaging and 2D correlation spectroscopy. Another factor is the recognition that vibrational spectroscopy can play a role in new rather than only in the traditional fields of application, e.g. new applications in the life-science field (living cells, cancer research), the characterisation of soil. But also the traditional application in catalysis sees new development within the context of Operando spectroscopy.  相似文献   

19.
The effect of different ions on the formation and behavior of quadruplex structures of the human telomere sequence d(TTAGGG)(4) has been studied by photon correlation spectroscopy (PCS) and circular dichroism (CD). The saturation and melting curves obtained in the presence of K(+), Na(+), Rb(+), Li(+), Cs(+), and Sr(2+) ions were recorded by CD spectroscopy and indicated the formation of monomeric quadruplexes. Analysis of the saturation curves obtained at 2 degrees C has shown that the presence of a single Sr(2+) ion per oligomer is sufficient for the formation of a monomeric quadruplex of the DNA sequence studied. In the presence of SrCl(2) at a concentration of 50 mM, the formation of tetrameric quadruplexes has been detected. The effect of Sr(2+) ions on the formation of quadruplex structures by the human telomere sequence d(TTAGGG)(4) is stronger and different from that of the other ions tested. The paper also presents results of a study of electrostatic interactions in solution. The translation diffusion coefficients D(T) of the structures present in solution have been determined by photon correlation spectroscopy and the effective charges on the structures have been calculated by combining the experimental data with the results based on the coupled mode theory. Analysis of the melting points monitored by the CD method has permitted a determination of Deltan, the number of ions released in the process of thermal denaturation. All the results are in good agreement with the predictions based on the theory of polyelectrolytes. The effect of ions on the formation and behavior of quadruplex structures of the human telomere sequence d(TTAGGG)(4) has been studied by photon correlation spectroscopy and circular dichroism.  相似文献   

20.
Signal formation in NMR is due to incoherent dephasing of nuclear spins. Of particular practical importance is the situation of nuclear spins undergoing independent stochastic motion in inhomogeneous local magnetic fields, e.g., created by magnetized objects. Since it was demonstrated recently that the frequency correlation function of nuclear spins can be measured directly, a theoretical analysis of such functions is of interest. Here, we provide a numerically exact analysis of that correlation function for the inhomogeneous fields around two particular geometries: cylinders and spheres. The functional form exhibits three regimes: after an initial transient, there is an algebraic regime with a t(-d/2) time dependence (d being the space dimension), followed by an exponential cutoff due to microscopic system size effects. The main parameter controlling the range of the individual regimes is the volume fraction of the magnetized objects. In addition to our numerical analysis, which is based on eigenfunction expansions, we provide analytical results and approximations based on the generalized moment expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号