首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
通过对SiO_2纳米粒子进行镁热还原及后处理,制备了多级无序Si介孔复合纳米结构MP-Si@SiO_x@C,此结构展现出容量非衰减缓升的电化学慢活化行为,可抵消循环容量常规衰减趋势,赋予负极优良的循环稳定性.通过X射线衍射(XRD)、透射电子显微镜(TEM)、场发射扫描电子显微镜(SEM)、N_2吸附-脱附测试和孔径分布模拟分析发现,Si介孔组织包含微-窄介孔(1~5 nm)、中介孔(5~20 nm)以及大介孔-宏孔(20~100 nm)三级孔道,分别源于原初级粒子内部孔道、粒子团聚堆垛与粒内酸蚀、团聚体再堆垛;此合成装配方法有效提升了Si材料的堆积密度,电池电极能获得较高的体积比容量和储能密度.  相似文献   

2.
本文报道一种孔道三维相互连通锐钛矿TiO2-SiO2纳米复合介孔材料的制备.该介孔材料是以两维六方有序结构、直孔道、锐钛矿70TiO2-30SiO2-950纳米复合介孔材料(于950oC晶化2 h)为前驱体, NaOH为SiO2的刻蚀剂,通过“在孔壁内造孔”的方法获得.我们的策略是采用温和的造孔条件,如稀NaOH溶液,合适的温度与固/液比等.采用X射线衍射(XRD),透射电镜(TEM)和低温N2吸附等技术对样品的介孔结构进行了系统表征.结果表明,墙内孔的密度非常高,孔径均一(平均尺寸3.6 nm),且在三维网络高度连通原孔道,但介孔结构仍保持其完整性.锐钛矿纳米晶粒的结晶度和大小在墙内造孔前后基本保持不变.该材料光催化降解罗丹明B(0.303 min–1)与亚甲基蓝(0.757 min–1)的活性相当高,此活性分别是其母体材料的5.1和5.3倍,甚至是Degussa P25光催化剂的16.5和24.1倍.这充分表明三维连通孔道结构对活性的大幅提高起了关键作用.孔道三维连通式锐钛矿TiO2-SiO2纳米复合介孔材料对上述污染物展现出意想不到的高降解活性,显著高于迄今已报道的金属氧化物基介孔材料对上述污染物的降解活性.更重要的是,该光催化剂具有相当高的稳定性和重复使用性.相信,本方法将为具有超高性能的孔道三维相互连通其它金属氧化物基介孔材料的制备铺平了道路.
  小角XRD结果表明,母体材料的孔道是两维六方有序结构,在孔壁内造孔之后,样品原有的介孔结构仍保持其规整性.宽角XRD结果显示,二氧化钛的晶相是锐钛矿,晶粒尺寸为10.8 nm.造新孔之后,锐钛矿纳米晶粒的结晶度和大小与母体样品的相比变化不大. TEM结果显示,母体样品的孔壁内没有孔.孔道是两维六方有序排列的直孔道,孔径大小均一(平均尺寸4.1 nm).高分辨透射电镜(TEM)观察揭示,锐钛矿纳米晶粒(平均大小11.3 nm)在孔壁内随机排列,并与无定形SiO2纳米颗粒相互连接,相间共存,形成类似“砖块?水泥砂浆”砌成的孔壁,这种独特的复合骨架结构赋予其很高的稳定性.当一些SiO2纳米颗粒被去除之后, TEM观察显示,孔壁内有密集分布的孔,这些孔取向随机,并在三维方向连通原孔道,但介孔骨架结构仍保持其完整性.墙内孔的大小范围很窄(3.1?4.3 nm),平均大小为3.6 nm.高分辨TEM观察显示,锐钛矿晶粒大小与母体材料内的相比基本未变.上述结果与XRD结果一致.低温N2吸附表征结果显示,母体样品内只有一种孔道,孔径为4.0 nm.去除部分SiO2后的样品内有两种孔道,孔径分别是3.4和4.1 nm.这些结果与TEM的观察吻合.罗丹明B与亚甲基蓝在造孔前后样品内扩散速率评价结果显示,其在三维连通孔道内的扩散速率很高,大约是其母体材料内的5倍以上.这表明相互连通的孔道网络结构非常有利于客体分子在其内扩散.光催化降解性能评价结果显示,罗丹明B与亚甲基蓝在相互连通孔道内降解的速率相当高,分别是其在不连通孔道内的5.1和5.3倍.这充分证明孔道三维相互连通对活性的大幅提高起了关键作用.我们对材料的稳定性和重复使用性作了评价,经过10次循环使用孔道三维相互连通锐钛矿TiO2-SiO2纳米复合介孔材料,其吸附与光催化降解罗丹明B的性能变化不大.这充分证明本文制备的孔道连通复合介孔材料的性能是相当稳定的和可重复使用的.该方法可用于制备具有超高性能的孔道三维相互连通其它金属氧化物基介孔材料,如Nb2O5, Ta2O5等.  相似文献   

3.
本文报道一种孔道三维相互连通锐钛矿TiO_2-SiO_2纳米复合介孔材料的制备.该介孔材料是以两维六方有序结构、直孔道、锐钛矿70TiO_2-30SiO_2-950纳米复合介孔材料(于950oC晶化2 h)为前驱体,NaOH为SiO_2的刻蚀剂,通过"在孔壁内造孔"的方法获得.我们的策略是采用温和的造孔条件,如稀NaOH溶液,合适的温度与固/液比等.采用X射线衍射(XRD),透射电镜(TEM)和低温N_2吸附等技术对样品的介孔结构进行了系统表征.结果表明,墙内孔的密度非常高,孔径均一(平均尺寸3.6 nm),且在三维网络高度连通原孔道,但介孔结构仍保持其完整性.锐钛矿纳米晶粒的结晶度和大小在墙内造孔前后基本保持不变.该材料光催化降解罗丹明B(0.303 min~(–1))与亚甲基蓝(0.757 min~(–1))的活性相当高,此活性分别是其母体材料的5.1和5.3倍,甚至是Degussa P25光催化剂的16.5和24.1倍.这充分表明三维连通孔道结构对活性的大幅提高起了关键作用.孔道三维连通式锐钛矿TiO_2-SiO_2纳米复合介孔材料对上述污染物展现出意想不到的高降解活性,显著高于迄今已报道的金属氧化物基介孔材料对上述污染物的降解活性.更重要的是,该光催化剂具有相当高的稳定性和重复使用性.相信,本方法将为具有超高性能的孔道三维相互连通其它金属氧化物基介孔材料的制备铺平了道路.小角XRD结果表明,母体材料的孔道是两维六方有序结构,在孔壁内造孔之后,样品原有的介孔结构仍保持其规整性.宽角XRD结果显示,二氧化钛的晶相是锐钛矿,晶粒尺寸为10.8 nm.造新孔之后,锐钛矿纳米晶粒的结晶度和大小与母体样品的相比变化不大.TEM结果显示,母体样品的孔壁内没有孔.孔道是两维六方有序排列的直孔道,孔径大小均一(平均尺寸4.1 nm).高分辨透射电镜(TEM)观察揭示,锐钛矿纳米晶粒(平均大小11.3 nm)在孔壁内随机排列,并与无定形SiO_2纳米颗粒相互连接,相间共存,形成类似"砖块-水泥砂浆"砌成的孔壁,这种独特的复合骨架结构赋予其很高的稳定性.当一些SiO_2纳米颗粒被去除之后,TEM观察显示,孔壁内有密集分布的孔,这些孔取向随机,并在三维方向连通原孔道,但介孔骨架结构仍保持其完整性.墙内孔的大小范围很窄(3.1-4.3 nm),平均大小为3.6 nm.高分辨TEM观察显示,锐钛矿晶粒大小与母体材料内的相比基本未变.上述结果与XRD结果一致.低温N_2吸附表征结果显示,母体样品内只有一种孔道,孔径为4.0 nm.去除部分SiO_2后的样品内有两种孔道,孔径分别是3.4和4.1 nm.这些结果与TEM的观察吻合.罗丹明B与亚甲基蓝在造孔前后样品内扩散速率评价结果显示,其在三维连通孔道内的扩散速率很高,大约是其母体材料内的5倍以上.这表明相互连通的孔道网络结构非常有利于客体分子在其内扩散.光催化降解性能评价结果显示,罗丹明B与亚甲基蓝在相互连通孔道内降解的速率相当高,分别是其在不连通孔道内的5.1和5.3倍.这充分证明孔道三维相互连通对活性的大幅提高起了关键作用.我们对材料的稳定性和重复使用性作了评价,经过10次循环使用孔道三维相互连通锐钛矿TiO_2-SiO_2纳米复合介孔材料,其吸附与光催化降解罗丹明B的性能变化不大.这充分证明本文制备的孔道连通复合介孔材料的性能是相当稳定的和可重复使用的.该方法可用于制备具有超高性能的孔道三维相互连通其它金属氧化物基介孔材料,如Nb_2O_5,Ta_2O_5等.  相似文献   

4.
在极稀溶液中, 通过改变反应溶剂去离子水的量或原料中铝源的量, 可控合成了不同粒径(20~70 nm)、形貌和孔道结构的纳米介孔氧化硅颗粒和纳米介孔铝掺杂氧化硅材料. 这种材料具有高比表面积(BET比表面积1000 m2/g)和较大的孔容(1.1~1.8 cm3/g). 反应物浓度降低或反应物中添加铝源后, 介孔材料的有序性下降, 粒径减小, 孔容增大, 并产生大量的间隙孔. 通过小角X射线衍射(SAXRD)、透射电镜和氮气吸附-脱附实验表征了样品.  相似文献   

5.
将实验室合成的聚苯乙烯乳胶微球(PS)加入制备方钠石(SOD)沸石的前驱体凝胶中,在45℃条件下制得干凝胶,随后采用"蒸汽相转化"法制备了大块状SOD沸石材料。对影响多级SOD沸石形成因素进行了详细讨论。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、N_2吸附-脱附和压汞技术等表征手段对制备的材料进行了详细表征。结果表明通过"蒸汽相转化"法制备的大块状SOD沸石由球状多晶聚集体构成,这些球状多晶聚集体又是由粒径为50~100 nm的初级纳米晶粒组成,在初级纳米晶粒上和纳米晶粒之间形成了2~50 nm介孔结构以及由脱除PS微球形成的50~300 nm的大孔结构。  相似文献   

6.
用L-苯丙氨酸衍生物的自组装体作为模板,四甲基氢氧化铵为催化剂,经溶胶-凝胶过程,制备出蠕虫状介孔二氧化硅纳米空心结构材料.表征结果显示,该二氧化硅的长度约为100~150nm,直径约30~50nm.介孔孔道平行于壳的表面,孔径为3.8nm.  相似文献   

7.
采用湿法浸渍将Mn3O4负载到不同碳材料的表面, 测试了这些复合材料用于空气电极催化剂的电催化性能. 通过充放电和循环伏安等电化学测试发现, 具有三维孔道结构的介孔碳材料(CMK-3)的催化性能远比二维孔道结构的介孔碳(OMC)的好. 从透射电子显微镜观察发现, 氧化锰粒子均负载在碳的外表面, 位于三维孔道外表面的氧化锰可以与电解液和碳孔道内的氧气同时接触. 这种结构产生了大量有效的三相反应界面, 从而达到良好的催化效果.  相似文献   

8.
一步合成了桥键嵌入二硫醚官能化介孔硅基材料(PMO-SBA-15),利朋介孔硅基材料孔道内表面的二硫醚基团捕获纳米金(Au)粒子的作用,获得了负载型纳米Au催化剂(Au-PMO-SBA-15).小角X射线衍射和低温N2吸附-脱附的结果表明,PMO-SBA-15和Au-PMO-SBA-15均保持典型的介孔结构;高分辨透射电镜观察到纳米Au粒子在载体孔道内分散均匀,甲均粒径为(2.2±0.2)nm.以70%的叔丁基过氧化氧水溶液为氧化剂,考察了纳米Au催化剂Au-PMO-SBA-15在苯甲醇氧化反应中的催化性能.结果表明,当反应温度为353 K、反应时间为5 h时,苯甲醇的转化率为29.1%,苯甲醛的选择性为100%,且催化剂重复使用7次其催化活性和苯甲醛选择性基奉不变.  相似文献   

9.
通过在3-氨基苯酚与甲醛聚合成球的过程中引入模板剂二氧化硅纳米颗粒,随后碳化、腐蚀除硅,制备得到了具有良好介孔结构的碳纳米球.通过透射电子显微镜(TEM)、粉末X射线衍射(XRD)、N_2等温吸脱附(BET)等表征手段对样品形貌和结构进行了分析,表明介孔碳球分散性良好、比表面积较大(~294m~2/g)、孔径分布均匀(~3.8nm).以该介孔碳球为载体,负载金属钯纳米颗粒,得到了金属颗粒分散均匀、粒径小(~2nm)的Pd/介孔碳球复合材料.应用于催化碘苯和苯硼酸的Suzuki偶联反应中,具有良好的催化活性.反应5min,碘苯的转化率达99.06%,催化剂循环使用7次,碘苯转化率未见明显下降.  相似文献   

10.
以间苯二酚和糠醛聚合而成的可溶性树脂为碳源,SnCl2为锡源,表面活性剂F127为模板剂,通过乳液分散法将锡源原位复合嵌入于介孔碳材料中,制备了纳米锡基材料高度分散于介孔碳中的复合材料。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、N2吸脱附(BET)、循环伏安(CV)等对材料的微观结构和电化学性能进行了表征。结果显示锡基材料在介孔碳中较为密集,分布均匀,粒径小于5 nm。介孔碳丰富的孔道结构有效限制和缓解了锡基材料的生长、团聚和体积膨胀,同时高比表面积增加了电解液与锡基活性材料的接触,提供了更多的反应活性点,从而获得了更高的电化学活性。充放电测试结果显示,700℃热处理后,锡/介孔碳纳米复合材料经过50次循环后实际放电比容量达203.4 mAh.g-1,表现出良好的电化学性能。  相似文献   

11.
A simple and efficient colorimetric biosensing for hydrogen peroxide and glucose with peroxidase-like vitamin C(Vc) functionalized Fe3O4 magnetic nanoparticles(Vc/Fe3O4MNPs) as a catalyst is reported. Compared with Fe3O4 MNPs and other catalysts, Vc/Fe3O4 MNPs exhibited superior catalytic properties. Kinetic studies indicated that vitamin C incorporated on Fe3O4 MNPs improved the affinity toward H2O2. As low as 0.29 μmol/L H2O2 can be detected with a wide linear range of 0.5—100 μmol/L H2O2; moreover, as low as 0.288 μmol/L glucose can be detected with a linear range of 0.5—25 μmol/L glucose. The detection method was highly sensitive in sensing H2O2 and glucose. The robustness of Vc/Fe3O4 MNPs rendered them suitable for wide ranging applications.  相似文献   

12.
介绍一个仪器分析综合实验——纳米Fe_2O_3和Fe_3O_4的制备及其催化高氯酸铵热分解性能的研究。采用水热法合成纳米Fe_3O_4,进而煅烧得到纳米Fe_2O_3。使用X射线粉末衍射(XRD)对制得的样品结构进行表征,通过透射电镜(TEM)可以发现其为球形颗粒,粒径在10–20 nm范围内。将制得的纳米Fe_2O_3和纳米Fe_3O_4按不同比例加入高氯酸铵(AP)中,通过对混合物进行热分析(TG-DSC),发现纳米Fe_2O_3和纳米Fe_3O_4可以明显促进AP的分解,且Fe_2O_3的催化效果优于Fe_3O_4的催化效果,并对催化机理进行了简单讨论。通过该实验,可以让学生学习水热反应的方法,掌握利用XRD、热分析等多种手段对化合物结构及性能进行表征的技能。  相似文献   

13.
以Fe3O4磁性纳米粒子为载体、多巴胺(DA)为功能单体、血红蛋白(Hb)为模板分子,用氯铂酸氧化DA生成聚多巴胺(PDA),同时氯铂酸还原为铂纳米粒子(PtNPs),与Hb一起负载于Fe3O4纳米粒子表面,洗脱Hb后合成了表面分子印迹磁性纳米粒子(印迹Fe3O4/PDA-PtNPs). 将印迹Fe3O4/PDA-PtNPs修饰于磁性玻碳基底表面,制得印迹Fe3O4/PDA-PtNPs修饰电极. 实验结果表明,印迹Fe3O4/PDA-PtNPs具有良好的水溶性,粒径分布均匀,生成的PtNPs具有良好的导电性和刚性. 用印迹Fe3O4/PDA-PtNPs构建的传感器对Hb具有良好的识别性,在0.14 ~ 2.7 μg·mL-1 Hb浓度范围与交流阻抗变化值呈良好的线性关系,检出限(S/N=3)为0.05 μg·mL-1.  相似文献   

14.
以十六烷基溴化铵(CTAB)为结构导向剂, 正硅酸乙酯(TEOS)为硅源, 在碱性环境下经过自组装过程对单分散性磁性Fe3O4纳米粒子进行包覆, 制备出磁性硅基介孔纳米粒子Fe3O4@SiO2. 结合X射线衍射、 傅里叶变换红外光谱(FTIR)、 透射电子显微镜(TEM)以及氮气吸附-脱附等技术对Fe3O4@SiO2粒子进行表征. 结果表明Fe3O4@SiO2纳米粒子具有球形形貌, 平均直径约为150 nm, 蠕虫状介孔结构, 比表面积为932 m2/g, 孔径为2.5 nm且分布较均匀, 包覆后Fe3O4的结构得以保持, 同时材料具有很好的磁响应能力. 以抗癌药紫杉醇(Paelitaxel, TXL)为模型药物进行负载, 实验结果表明, Fe3O4@SiO2对TXL的负载能力为80 mg/g, TXL-Fe3O4@SiO2对TXL的缓释时间持续120 h以上, 累积释放量达到30 mg/g. 通过噻唑蓝比色(MTT)法测量了TXL-Fe3O4@SiO2粒子对体外培养的HeLa细胞的细胞毒性, 与相同浓度的TXL相比, TXL-Fe3O4@SiO2对HeLa细胞的抑制率明显增高.  相似文献   

15.
Dextran-Fe3O4 hybrid clusters were fabricated by coprecipitating ferric and ferrous ions in the presence of dextran, and after characterization of these clusters combined with calculation based on classical nucleation theory, a structure model of these hybrid clusters was proposed. The hybrid cluster was believed including small Fe3O4 nanoparticles and dextran which acted as both nucleating agent and stabilizer, so that exist in both the inside of magnetite nanoparticles and the periphery of the hybrid clusters. Besides, the effects of WCD (weightiron cation:weightdextran) and molecular weight of dextran on the size, morphology and magnetic property of clusters were also investigated in this paper. It was found that the variation of WCD and molecular weight of dextran have great effect on the size of the hybrid clusters, but have almost no effect on the size of the Fe3O4 nanoparticles. The characterization of magnetic property demonstrated that the Fe3O4 nanoparticles are of a single domain and the saturation magnetization was affected by the size of dextran-Fe3O4 hybrid clusters.  相似文献   

16.
Energy components used in solid rocket propellants are beneficial for improving the energy performance, and their thermal decomposition characteristics significantly affect the combustion properties of the propellants. As a kind of energetic material with both high energy and low sensitivity (impact and friction), 5, 5'-bistetrazole-1, 1'-diolate (TKX-50) can effectively improve the energy and safety characteristics of solid propellants. Burning catalyst is another important component of solid propellants, which can significantly improve the burning rate of the propellant and reduce the pressure exponent. Among various burning catalysts, nanoscale transition metal oxides can promote the thermal decomposition of the energetic component, thus enhancing the combustion properties of the solid propellant. However, the catalytic effects of nanoscale transition metal oxides with different morphologies on the thermal decomposition of TKX-50 have rarely been studied. Based on the excellent catalytic activity of Fe2O3 for TKX-50 thermal decomposition, nano-Fe2O3 particles with spherical and tubular microstructures were used for TKX-50 thermal decomposition. The Fe2O3 nanoparticles were successfully fabricated via the solvothermal method and characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) analyses. The XRD, FT-IR, and XPS results confirmed the successful fabrication of spherical and tubular Fe2O3 samples. The SEM and TEM images showed that the spherical Fe2O3 samples are composed of agglomerated Fe2O3 nanoparticles with an average particle size of 110 nm. In addition, the average diameter and length of hollow tubular Fe2O3 nanoparticles are 120 nm and 200 nm, respectively. The catalytic activities of spherical and tubular Fe2O3 for TKX-50 decomposition were studied by thermogravimetric analysis (TG) and differential scanning calorimetry (DSC) methods. The DSC and TG-DTG curves showed that both tubular and spherical Fe2O3 could effectively promote TKX-50 thermal decomposition. The first thermal decomposition peak temperature (TFDP) of TKX-50 was reduced by 36.5 K and 26.3 K in the presence of tubular and spherical Fe2O3, respectively, at 10 K·min1. The activation energy (Ea) of TKX-50, determined by the iso-conversional method, was significantly reduced in the presence of both tubular and spherical Fe2O3. The results indicated that the microstructure of the catalyst has a significant effect on its catalytic performance for TKX-50 thermal decomposition, and that tubular Fe2O3 with hollow microstructure possesses better catalytic activity than spherical Fe2O3. The excellent catalytic activity of tubular Fe2O3 can be attributed to the hollow microstructure, which has more active sites for TKX-50 thermal decomposition.  相似文献   

17.
A fast approach was described for the synthesis of water-dispersible monodisperse dopamine-coated Fe3O4 nanoparticles(DA-Fe3O4) with uniform size and shape via ligand-exchange of oleic acid on Fe3O4 using only 2 min.The prepared DA-Fe3O4 nanoparticles were characterized by transmission electron microscopy,Fourier transform infrared spectrometry,and vibrating sample magnetometer.The results indicated that the resulting DA-Fe3O4 nanoparticles had an average diameter of about 19.2 nm. The magnetic saturation value of the prepared DA-Fe3O4 nanoparticles was determined to be 72.87 emu/g,which indicating a well-established superparamagnetic property.  相似文献   

18.
袁洋  王佳新  曹玉华 《电化学》2019,25(6):757-763
采用表面印迹技术,以磁性二氧化硅纳米粒子(Fe3O4@SiO2 NPs)作为载体、血红蛋白(Hb)为模板分子、正硅酸乙酯(TEOS)为印迹聚合物单体,制备了Hb印迹Fe3O4@SiO2的磁性印迹纳米粒子(MMIPs NPs). MMIPs NPs具有磁性内核和血红蛋白印迹壳层的核壳结构,可以富集并固定Hb. 使用壳聚糖将MMIPs NPs固定于磁性电极表面,构建血红蛋白类酶生物传感器,研究了Hb对过氧化氢(H2O2)的催化活性. MMIPS NPS相比于磁性非印迹纳米粒子(MNIPS NPS),催化电流增加了14.3%. 采用磁性电极,MMIPS NPS、Hb和O2的顺磁性使得该类酶生物传感器对H2O2的催化电流增加了60.0%. 血红蛋白类酶生物传感器电流响应与H2O2浓度在25 ~ 200 μmol·L-1间呈线性关系,检出限为3 μmol·L-1(S/N=3),表明该类酶传感器对H2O2具有良好的催化性能.  相似文献   

19.
以柠檬酸三钠作辅助剂,用多元醇溶剂热还原法制备了纳米晶粒和微球直径可控的、单分散的超顺磁Fe3O4亚微球.发现与铁原子有强亲和力的柠檬酸根能有效吸附在还原产生的初始Fe3O4纳米粒子表面,阻碍其晶粒生长和影响其静电排斥力的大小,从而能在较大范围内调控最终产物Fe3O4亚微球的直径和饱和磁化强度.改变柠檬酸根或铁盐浓度不但可以调控初始Fe3O4纳米粒子的粒径,而且可以在220-550nm范围内调控单分散Fe3O4亚微球的直径,从而得到粒径均一的超顺磁Fe3O4亚微球.  相似文献   

20.
采用化学共沉淀法合成硅包覆的磁性纳米粒子Fe_3O_4@SiO_2,进一步通过六亚甲基二异氰酸酯将吡哆酰肼分子(Pyh)接枝到Fe_3O_4@SiO_2表面,制得功能化的磁性纳米复合物(Fe_3O_4@SiO_2-Pyh)。通过傅里叶变换红外光谱、透射电子显微镜、X射线衍射等技术手段对其结构、形貌和磁性能进行了表征。Fe_3O_4@SiO_2-Pyh粒子具有规则的核壳结构,粒径分布在50~55 nm,壳层厚度约为15 nm。Fe_3O_4@SiO_2-Pyh结构中含有酰腙类活性基团—CO—NH—N=CH—,能与Cu~(2+)形成稳定的配合物,在此基础上采用紫外可见吸收光谱特性建立了测定Cu~(2+)的分析方法,线性范围为3.4×10~(-7)~4.5×10~(-6)mol/L,检出限为1.03×10~(-7)mol/L。此外,利用Fe_3O_4@SiO_2-Pyh良好的磁响应,通过外部磁场能够有效地除去水中过量的铜离子,在环境领域具有潜在的应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号